IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i3d10.1007_s11749-024-00929-7.html
   My bibliography  Save this article

A new sufficient dimension reduction method via rank divergence

Author

Listed:
  • Tianqing Liu

    (Jilin University)

  • Danning Li

    (Northeast Normal University)

  • Fengjiao Ren

    (Jilin University)

  • Jianguo Sun

    (University of Missouri)

  • Xiaohui Yuan

    (Changchun University of Technology)

Abstract

Sufficient dimension reduction is commonly performed to achieve data reduction and help data visualization. Its main goal is to identify functions of the predictors that are smaller in number than the predictors and contain the same information as the predictors for the response. In this paper, we are concerned with the linear functions of the predictors, which determine a central subspace that preserves sufficient information about the conditional distribution of a response given covariates. Many methods have been developed in the literature for the estimation of the central subspace. However, most of the existing sufficient dimension reduction methods are sensitive to outliers and require some strict restrictions on both covariates and response. To address this, we propose a novel dependence measure, rank divergence, and develop a rank divergence-based sufficient dimension reduction approach. The new method only requires some mild conditions on the covariates and response and is robust to outliers or heavy-tailed distributions. Moreover, it applies to both discrete or categorical covariates and multivariate responses. The consistency of the resulting estimator of the central subspace is established, and numerical studies suggest that it works well in practical situations.

Suggested Citation

  • Tianqing Liu & Danning Li & Fengjiao Ren & Jianguo Sun & Xiaohui Yuan, 2024. "A new sufficient dimension reduction method via rank divergence," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 921-950, September.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00929-7
    DOI: 10.1007/s11749-024-00929-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00929-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00929-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00929-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.