Sparse time-varying parameter VECMs with an application to modeling electricity prices
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Hauzenberger, Niko & Pfarrhofer, Michael & Rossini, Luca, 2025. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," International Journal of Forecasting, Elsevier, vol. 41(1), pages 361-376.
References listed on IDEAS
- Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014.
"Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models,"
Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
- Gregor Kastner & Sylvia Fruhwirth-Schnatter, 2017. "Ancillarity-Sufficiency Interweaving Strategy (ASIS) for Boosting MCMC Estimation of Stochastic Volatility Models," Papers 1706.05280, arXiv.org.
- Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015.
"Forecasting day-ahead electricity prices: Utilizing hourly prices,"
Energy Economics, Elsevier, vol. 50(C), pages 227-239.
- Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2011.
"Bayesian inference in a time varying cointegration model,"
Journal of Econometrics, Elsevier, vol. 165(2), pages 210-220.
- Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2008. "Bayesian Inference in the Time Varying Cointegration Model," Working Paper series 23_08, Rimini Centre for Economic Analysis.
- Gary Koop & Roberto Leon-Gonzales & Rodney W Strachan, 2011. "Bayesian Inference in a Time Varying Cointegration Model," CAMA Working Papers 2011-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2011. "Bayesian Inference in the Time Varying Cointegration Model," Working Papers 1121, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W., 2008. "Bayesian Inference in the Time Varying Cointegration Model," SIRE Discussion Papers 2008-60, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Roberto Leon Gonzalez & Rodney W. Strachan, 2008. "Bayesian Inference in the Time Varying Cointegration Model," GRIPS Discussion Papers 08-01, National Graduate Institute for Policy Studies.
- Angelica Gianfreda, Lucia Parisio, and Matteo Pelagatti, 2019.
"The RES-Induced Switching Effect Across Fossil Fuels: An Analysis of Day-Ahead and Balancing Prices,"
The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
- Angelica Gianfreda & Lucia Parisio & Matteo Pelagatti, 2019. "The RES-Induced Switching Effect Across Fossil Fuels: An Analysis of Day-Ahead and Balancing Prices," The Energy Journal, , vol. 40(1_suppl), pages 1-22, June.
- Chew Lian Chua & Sarantis Tsiaplias, 2018. "A Bayesian Approach to Modeling Time-Varying Cointegration and Cointegrating Rank," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 267-277, April.
- Yukai Yang & Luc Bauwens, 2018.
"State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering,"
Econometrics, MDPI, vol. 6(4), pages 1-22, December.
- Yukai Yang & Luc Bauwens, 2018. "State-space models on the Stiefel Manifold with a new approach to nonlinear filtering," LIDAM Reprints CORE 2985, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with A New Approach to Nonlinear Filtering," CREATES Research Papers 2018-30, Department of Economics and Business Economics, Aarhus University.
- Bruno Bosco & Lucia Parisio & Matteo Pelagatti & Fabio Baldi, 2010. "Long-run relations in european electricity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 805-832.
- Markus Jochmann & Gary Koop & Roberto Leon‐Gonzalez & Rodney W. Strachan, 2013.
"Stochastic search variable selection in vector error correction models with an application to a model of the UK macroeconomy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 62-81, January.
- Markus Jochmann & Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2009. "Stochastic Search Variable Selection in Vector Error Correction Models with an Application to a Model of the UK Macroeconomy," Working Papers 0919, University of Strathclyde Business School, Department of Economics.
- Markus Jochmann & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2009. "Stochastic Search Variable Selection in Vector Error Correction Models with an Application to a Model of the UK Macroeconomy," Working Paper series 44_09, Rimini Centre for Economic Analysis.
- Jochmann, Markus & Koop, Gary & Leon-Gonzalez & Strachan, Rodney W., 2009. "Stochastic Search Variable Selection in Vector Error Correction Models with an Application to a Model of the UK Macroeconomy," SIRE Discussion Papers 2009-44, Scottish Institute for Research in Economics (SIRE).
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2019.
"Priors for the Long Run,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 565-580, April.
- Primiceri, Giorgio & Giannone, Domenico & Lenza, Michele, 2016. "Priors for the Long Run," CEPR Discussion Papers 11261, C.E.P.R. Discussion Papers.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2018. "Priors for the long run," Working Paper Series 2132, European Central Bank.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2017. "Priors for the long run," Staff Reports 832, Federal Reserve Bank of New York.
- Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
- Strachan, Rodney W, 2003.
"Valid Bayesian Estimation of the Cointegrating Error Correction Model,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 185-195, January.
- Strachan, R., 2000. "Valid Bayesian Estimation of the Cointegrating Error Correction Model," Monash Econometrics and Business Statistics Working Papers 6/00, Monash University, Department of Econometrics and Business Statistics.
- Huber, Florian & Zörner, Thomas O., 2019. "Threshold cointegration in international exchange rates:A Bayesian approach," International Journal of Forecasting, Elsevier, vol. 35(2), pages 458-473.
- Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- De Vany, Arthur S. & Walls, W. David, 1999. "Cointegration analysis of spot electricity prices: insights on transmission efficiency in the western US," Energy Economics, Elsevier, vol. 21(5), pages 435-448, October.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- P. Richard Hahn & Carlos M. Carvalho, 2015. "Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 435-448, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Paap, Richard & van Dijk, Herman K, 2003.
"Bayes Estimates of Markov Trends in Possibly Cointegrated Series: An Application to U.S. Consumption and Income,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 547-563, October.
- Richard Paap & Herman K. van Dijk, 1999. "Bayes Estimates of Markov Trends in possibly Cointegrated Series: An Application to US Consumption and Income," Tinbergen Institute Discussion Papers 99-024/4, Tinbergen Institute.
- Paap, R. & van Dijk, H.K., 2002. "Bayes estimates of Markov trends in possibly cointegrated series: an application to US consumption and income," Econometric Institute Research Papers EI 2002-42, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Kastner, Gregor, 2016.
"Dealing with Stochastic Volatility in Time Series Using the R Package stochvol,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 69(i05).
- Gregor Kastner, 2019. "Dealing with Stochastic Volatility in Time Series Using the R Package stochvol," Papers 1906.12134, arXiv.org.
- Geweke, John, 1996.
"Bayesian reduced rank regression in econometrics,"
Journal of Econometrics, Elsevier, vol. 75(1), pages 121-146, November.
- John Geweke, 1995. "Bayesian reduced rank regression in econometrics," Working Papers 540, Federal Reserve Bank of Minneapolis.
- Antik Chakraborty & Anirban Bhattacharya & Bani K Mallick, 2020. "Bayesian sparse multiple regression for simultaneous rank reduction and variable selection," Biometrika, Biometrika Trust, vol. 107(1), pages 205-221.
- Strachan, Rodney W. & Inder, Brett, 2004. "Bayesian analysis of the error correction model," Journal of Econometrics, Elsevier, vol. 123(2), pages 307-325, December.
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
- David Puelz & P. Richard Hahn & Carlos M. Carvalho, 2020. "Portfolio selection for individual passive investing," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(1), pages 124-142, January.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Villani, Mattias, 2001.
"Bayesian prediction with cointegrated vector autoregressions,"
International Journal of Forecasting, Elsevier, vol. 17(4), pages 585-605.
- Villani, Mattias, 1999. "Bayesian Prediction with a Cointegrated Vector Autoregression," Working Paper Series 97, Sveriges Riksbank (Central Bank of Sweden).
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Prüser, Jan, 2023. "Data-based priors for vector error correction models," International Journal of Forecasting, Elsevier, vol. 39(1), pages 209-227.
- Kohns, David & Potjagailo, Galina, 2023. "Flexible Bayesian MIDAS: time‑variation, group‑shrinkage and sparsity," Bank of England working papers 1025, Bank of England.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020.
"Comparing the forecasting performances of linear models for electricity prices with high RES penetration,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Working Papers No 2/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Papers 1801.01093, arXiv.org, revised Nov 2019.
- Jochmann Markus & Koop Gary, 2015.
"Regime-switching cointegration,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(1), pages 35-48, February.
- Markus Jochmann & Gary Koop, 2011. "Regime-Switching Cointegration," Working Papers 1125, University of Strathclyde Business School, Department of Economics.
- Jochmann, Markus & Koop, Gary, 2011. "Regime-Switching Cointegration," SIRE Discussion Papers 2011-60, Scottish Institute for Research in Economics (SIRE).
- Jochmann, Markus & Koop, Gary, 2011. "Regime-Switching Cointegration," SIRE Discussion Papers 2011-36, Scottish Institute for Research in Economics (SIRE).
- Markus Jochmann & Gary Koop, 2011. "Regime-Switching Cointegration," Working Paper series 40_11, Rimini Centre for Economic Analysis.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Gao, Shen & Hou, Chenghan & Nguyen, Bao H., 2021. "Forecasting natural gas prices using highly flexible time-varying parameter models," Economic Modelling, Elsevier, vol. 105(C).
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2023.
"Are low frequency macroeconomic variables important for high frequency electricity prices?,"
Economic Modelling, Elsevier, vol. 120(C).
- Claudia Foroni & Francesco Ravazzolo & Luca Rossini, 2020. "Are low frequency macroeconomic variables important for high frequency electricity prices?," Papers 2007.13566, arXiv.org, revised Dec 2022.
- Foroni, Claudia & Ravazzolo, Francesco & Rossini, Luca, 2019. "Forecasting daily electricity prices with monthly macroeconomic variables," Working Paper Series 2250, European Central Bank.
- David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- David Kohns & Arnab Bhattacharjee, 2020.
"Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model,"
Papers
2011.00938, arXiv.org, revised May 2022.
- Bhattacharjee, Arnab & Kohns, David, 2022. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," National Institute of Economic and Social Research (NIESR) Discussion Papers 538, National Institute of Economic and Social Research.
- Hauzenberger Niko & Huber Florian & Pfarrhofer Michael & Zörner Thomas O., 2021.
"Stochastic model specification in Markov switching vector error correction models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 25(2), pages 1-17, April.
- Huber, Florian & Pfarrhofer, Michael & Zörner, Thomas O., 2018. "Stochastic model specification in Markov switching vector error correction models," Working Papers in Economics 2018-3, University of Salzburg.
- Niko Hauzenberger & Florian Huber & Michael Pfarrhofer & Thomas O. Zorner, 2018. "Stochastic model specification in Markov switching vector error correction models," Papers 1807.00529, arXiv.org, revised Sep 2019.
- Gary Koop & Rodney Strachan & Herman van Dijk & Mattias Villani, 2004.
"Bayesian Approaches to Cointegration,"
Discussion Papers in Economics
04/27, Division of Economics, School of Business, University of Leicester.
- Koop, G. & Strachan, R.W. & van Dijk, H.K. & Villani, M., 2005. "Bayesian approaches to cointegratrion," Econometric Institute Research Papers EI 2005-13, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Gregor Kastner & Florian Huber, 2020.
"Sparse Bayesian vector autoregressions in huge dimensions,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
- Gregor Kastner & Florian Huber, 2017. "Sparse Bayesian vector autoregressions in huge dimensions," Papers 1704.03239, arXiv.org, revised Dec 2019.
- Villani, Mattias, 2005. "Bayesian Inference of General Linear Restrictions on the Cointegration Space," Working Paper Series 189, Sveriges Riksbank (Central Bank of Sweden).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-11-23 (Econometrics)
- NEP-ENE-2020-11-23 (Energy Economics)
- NEP-ETS-2020-11-23 (Econometric Time Series)
- NEP-FOR-2020-11-23 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.04577. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.