Low-dimensional confounder adjustment and high-dimensional penalized estimation for survival analysis
Author
Abstract
Suggested Citation
DOI: 10.1007/s10985-015-9350-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
- Johnson, Brent A. & Lin, D.Y. & Zeng, Donglin, 2008. "Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 672-680, June.
- Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
- Cheng, Ming-Yen & Zhang, Wenyang & Chen, Lu-Hung, 2009. "Statistical Estimation in Generalized Multiparameter Likelihood Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1179-1191.
- Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
- Jialiang Li & Shuangge Ma, 2010. "Interval‐censored data with repeated measurements and a cured subgroup," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 693-705, August.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Jian Huang & Shuangge Ma & Huiliang Xie, 2006. "Regularized Estimation in the Accelerated Failure Time Model with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 62(3), pages 813-820, September.
- Li, Jialiang & Zhang, Wenyang, 2011. "A Semiparametric Threshold Model for Censored Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 685-696.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiaochao Xia & Hao Ming, 2022. "A Flexibly Conditional Screening Approach via a Nonparametric Quantile Partial Correlation," Mathematics, MDPI, vol. 10(24), pages 1-32, December.
- Yue, Mu & Li, Jialiang & Cheng, Ming-Yen, 2019. "Two-step sparse boosting for high-dimensional longitudinal data with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 222-234.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Chao & Feng, Xingdong & Huang, Jian & Jiao, Yuling & Zhang, Shuang, 2022. "ℓ0-Regularized high-dimensional accelerated failure time model," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
- Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
- Hu, Jianwei & Chai, Hao, 2013. "Adjusted regularized estimation in the accelerated failure time model with high dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 96-114.
- Guo-Liang Tian & Mingqiu Wang & Lixin Song, 2014. "Variable selection in the high-dimensional continuous generalized linear model with current status data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 467-483, March.
- Dong, Qingkai & Liu, Binxia & Zhao, Hui, 2023. "Weighted least squares model averaging for accelerated failure time models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
- Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
- Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
- Brittany Green & Heng Lian & Yan Yu & Tianhai Zu, 2021. "Ultra high‐dimensional semiparametric longitudinal data analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 903-913, September.
- Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
- Jialiang Li & Qi Zheng & Limin Peng & Zhipeng Huang, 2016. "Survival impact index and ultrahigh‐dimensional model‐free screening with survival outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1145-1154, December.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high-dimensional models," CeMMAP working papers 35/15, Institute for Fiscal Studies.
- Yu, Ke & Luo, Shan, 2024. "Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
- Xia, Xiaochao & Liu, Zhi & Yang, Hu, 2016. "Regularized estimation for the least absolute relative error models with a diverging number of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 104-119.
- Huiwen Wang & Ruiping Liu & Shanshan Wang & Zhichao Wang & Gilbert Saporta, 2020. "Ultra-high dimensional variable screening via Gram–Schmidt orthogonalization," Computational Statistics, Springer, vol. 35(3), pages 1153-1170, September.
- Xia, Xiaochao & Yang, Hu & Li, Jialiang, 2016. "Feature screening for generalized varying coefficient models with application to dichotomous responses," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 85-97.
- Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
- Joel L. Horowitz, 2015. "Variable selection and estimation in high‐dimensional models," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 48(2), pages 389-407, May.
- Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
- Yue Mu & Li Jialiang, 2017. "Improvement Screening for Ultra-High Dimensional Data with Censored Survival Outcomes and Varying Coefficients," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-16, May.
More about this item
Keywords
Accelerated failure time model; Confounder adjustment; Gene expression; Independent screening; Variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:22:y:2016:i:4:d:10.1007_s10985-015-9350-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.