IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v191y2024ics0167947323001846.html
   My bibliography  Save this article

Nonparametric quantile scalar-on-image regression

Author

Listed:
  • Wang, Chuchu
  • Song, Xinyuan

Abstract

A quantile scalar-on-image regression model is developed to comprehensively study the relationship between cognitive decline and various clinical covariates and imaging factors. As a motivating example, the high-dimensional brain imaging data from the research on Alzheimer's disease are considered predictors of patients' cognitive decline. A Bayesian nonparametric model is proposed to handle the complex spatially distributed imaging data, where the coefficient function is assumed to be a latent Gaussian process. A soft-thresholding operator is introduced to capture the sparse structure of the regression coefficients. Utilizing kernel basis functions to approximate the latent Gaussian process facilitates easy-to-implement computation and consistent estimation. Inference is performed within the Bayesian framework, using an efficient Markov chain Monte Carlo algorithm. The proposed method is compared with the functional principal component analysis method in simulations and applied to a study of Alzheimer's disease.

Suggested Citation

  • Wang, Chuchu & Song, Xinyuan, 2024. "Nonparametric quantile scalar-on-image regression," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323001846
    DOI: 10.1016/j.csda.2023.107873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947323001846
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2023.107873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Xiao Wang & Hongtu Zhu, 2017. "Generalized Scalar-on-Image Regression Models via Total Variation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1156-1168, July.
    4. Dengdeng Yu & Linbo Wang & Dehan Kong & Hongtu Zhu, 2022. "Mapping the Genetic-Imaging-Clinical Pathway with Applications to Alzheimer’s Disease," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1656-1668, October.
    5. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    6. Kaufman, Cari G. & Schervish, Mark J. & Nychka, Douglas W., 2008. "Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1545-1555.
    7. Xiangnan Feng & Tengfei Li & Xinyuan Song & Hongtu Zhu, 2020. "Bayesian Scalar on Image Regression With Nonignorable Nonresponse," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1574-1597, December.
    8. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    9. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    10. Zhengwu Zhang & Xiao Wang & Linglong Kong & Hongtu Zhu, 2022. "High-Dimensional Spatial Quantile Function-on-Scalar Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1563-1578, September.
    11. Jian Kang & Brian J Reich & Ana-Maria Staicu, 2018. "Scalar-on-image regression via the soft-thresholded Gaussian process," Biometrika, Biometrika Trust, vol. 105(1), pages 165-184.
    12. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    2. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    3. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    4. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    5. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    6. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    7. Yukiko Omata & Hajime Katayama & Toshi. H. Arimura, 2017. "Same concerns, same responses? A Bayesian quantile regression analysis of the determinants for supporting nuclear power generation in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(3), pages 581-608, July.
    8. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    9. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    10. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    11. Jeffrey Dotson & Joseph Retzer & Greg Allenby, 2008. "Non-normal simultaneous regression models for customer linkage analysis," Quantitative Marketing and Economics (QME), Springer, vol. 6(3), pages 257-277, September.
    12. Jesus regstdpo-Cuaresma & Neil Foster & Robert Stehrer, 2011. "Determinants of Regional Economic Growth by Quantile," Regional Studies, Taylor & Francis Journals, vol. 45(6), pages 809-826.
    13. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    14. Yuta Kurose & Yasuhiro Omori, 2012. "Bayesian Analysis of Time-Varying Quantiles Using a Smoothing Spline," CIRJE F-Series CIRJE-F-845, CIRJE, Faculty of Economics, University of Tokyo.
    15. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    16. Wang, Kai Y.K. & Chen, Cathy W.S. & So, Mike K.P., 2023. "Quantile three-factor model with heteroskedasticity, skewness, and leptokurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    17. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    18. Zeng, Zijian & Li, Meng, 2021. "Bayesian median autoregression for robust time series forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1000-1010.
    19. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    20. Park, Seyoung & Lee, Eun Ryung, 2021. "Hypothesis testing of varying coefficients for regional quantiles," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:191:y:2024:i:c:s0167947323001846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.