IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i8p1975-1982.html
   My bibliography  Save this article

On sufficient dimension reduction for proportional censorship model with covariates

Author

Listed:
  • Wen, Xuerong Meggie

Abstract

The requirement of constant censoring parameter [beta] in Koziol-Green (KG) model is too restrictive. When covariates are present, the conditional KG model (Veraverbekea and Cadarso-Suárez, 2000) which allows [beta] to be dependent on the covariates is more realistic. In this paper, using sufficient dimension reduction methods, we provide a model-free diagnostic tool to test if [beta] is a function of the covariates. Our method also allows us to conduct a model-free selection of the related covariates. A simulation study and a real data analysis are also included to illustrate our approach.

Suggested Citation

  • Wen, Xuerong Meggie, 2010. "On sufficient dimension reduction for proportional censorship model with covariates," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 1975-1982, August.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1975-1982
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00087-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li K-C. & Aragon Y. & Shedden K. & Thomas Agnan C., 2003. "Dimension Reduction for Multivariate Response Data," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 99-109, January.
    2. Amato, U. & Antoniadis, A. & De Feis, I., 2006. "Dimension reduction in functional regression with applications," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2422-2446, May.
    3. Saracco, Jérôme, 2005. "Asymptotics for pooled marginal slicing estimator based on SIR[alpha] approach," Journal of Multivariate Analysis, Elsevier, vol. 96(1), pages 117-135, September.
    4. Nader Ebrahimi, 2003. "Identifiability and censored data," Biometrika, Biometrika Trust, vol. 90(3), pages 724-727, September.
    5. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    6. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    7. Ming Yuan, 2005. "Semiparametric censorship model with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 489-514, December.
    8. Noel Veraverbeke & Carmen Cadarso-Suárez, 2000. "Estimation of the conditional distribution in a conditional Koziol-green model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(1), pages 97-122, June.
    9. Cheng, Philip E. & Lin, Gwo Dong, 1987. "Maximum likelihood estimation of a survival function under the koziol-green proportional hazards model," Statistics & Probability Letters, Elsevier, vol. 5(1), pages 75-80, January.
    10. Benoît Liquet & Jérôme Saracco, 2007. "Pooled marginal slicing approach via SIR α with discrete covariables," Computational Statistics, Springer, vol. 22(4), pages 599-617, December.
    11. Benoit Liquet & Jérôme Saracco, 2007. "Pooled marginal slicing approach via SIRa with discrete covariables," Post-Print hal-00153828, HAL.
    12. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    13. Wen, Xuerong Meggie, 2007. "A note on sufficient dimension reduction," Statistics & Probability Letters, Elsevier, vol. 77(8), pages 817-821, April.
    14. Wang, Hansheng & Xia, Yingcun, 2008. "Sliced Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 811-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoo, Jae Keun, 2015. "A theoretical note on optimal sufficient dimension reduction with singularity," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 109-113.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    3. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    4. Li, Lexin, 2009. "Exploiting predictor domain information in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2665-2672, May.
    5. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    6. Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
    7. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    8. Kapla, Daniel & Fertl, Lukas & Bura, Efstathia, 2022. "Fusing sufficient dimension reduction with neural networks," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    9. Wang, Qin & Yao, Weixin, 2012. "An adaptive estimation of MAVE," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 88-100, February.
    10. Yongtao Guan & Hansheng Wang, 2010. "Sufficient dimension reduction for spatial point processes directed by Gaussian random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 367-387, June.
    11. Tao, Chenyang & Feng, Jianfeng, 2017. "Canonical kernel dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 131-148.
    12. Wenjuan Li & Wenying Wang & Jingsi Chen & Weidong Rao, 2023. "Aggregate Kernel Inverse Regression Estimation," Mathematics, MDPI, vol. 11(12), pages 1-10, June.
    13. Portier, François & Delyon, Bernard, 2013. "Optimal transformation: A new approach for covering the central subspace," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 84-107.
    14. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    15. Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
    16. Eliana Christou, 2020. "Robust dimension reduction using sliced inverse median regression," Statistical Papers, Springer, vol. 61(5), pages 1799-1818, October.
    17. Hyokyoung Grace Hong & Jianhui Zhou, 2013. "A multi-index model for quantile regression with ordinal data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(6), pages 1231-1245, June.
    18. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    19. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    20. repec:jss:jstsof:39:i03 is not listed on IDEAS
    21. Wang, Qin & Yin, Xiangrong, 2011. "Estimation of inverse mean: An orthogonal series approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1656-1664, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:8:p:1975-1982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.