IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i4p3445-3457.html
   My bibliography  Save this article

Sparse estimation in semiparametric finite mixture of varying coefficient regression models

Author

Listed:
  • Abbas Khalili
  • Farhad Shokoohi
  • Masoud Asgharian
  • Shili Lin

Abstract

Finite mixture of regressions (FMR) are commonly used to model heterogeneous effects of covariates on a response variable in settings where there are unknown underlying subpopulations. FMRs, however, cannot accommodate situations where covariates' effects also vary according to an “index” variable—known as finite mixture of varying coefficient regression (FM‐VCR). Although complex, this situation occurs in real data applications: the osteocalcin (OCN) data analyzed in this manuscript presents a heterogeneous relationship where the effect of a genetic variant on OCN in each hidden subpopulation varies over time. Oftentimes, the number of covariates with varying coefficients also presents a challenge: in the OCN study, genetic variants on the same chromosome are considered jointly. The relative proportions of hidden subpopulations may also change over time. Nevertheless, existing methods cannot provide suitable solutions for accommodating all these features in real data applications. To fill this gap, we develop statistical methodologies based on regularized local‐kernel likelihood for simultaneous parameter estimation and variable selection in sparse FM‐VCR models. We study large‐sample properties of the proposed methods. We then carry out a simulation study to evaluate the performance of various penalties adopted for our regularized approach and ascertain the ability of a BIC‐type criterion for estimating the number of subpopulations. Finally, we applied the FM‐VCR model to analyze the OCN data and identified several covariates, including genetic variants, that have age‐dependent effects on OCN.

Suggested Citation

  • Abbas Khalili & Farhad Shokoohi & Masoud Asgharian & Shili Lin, 2023. "Sparse estimation in semiparametric finite mixture of varying coefficient regression models," Biometrics, The International Biometric Society, vol. 79(4), pages 3445-3457, December.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3445-3457
    DOI: 10.1111/biom.13870
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13870
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Ming Liao & Jianying Shi & Lirong Huang & Yong Gao & Aihua Tan & Chunlei Wu & Zheng Lu & Xiaobo Yang & Shijun Zhang & Yanlin Hu & Xue Qin & Jianling Li & Gang Chen & Jianfeng Xu & Zengnan Mo & Haiying, 2014. "Genome-Wide Association Study Identifies Variants in PMS1 Associated with Serum Ferritin in a Chinese Population," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-7, August.
    3. Mian Huang & Weixin Yao & Shaoli Wang & Yixin Chen, 2018. "Statistical Inference and Applications of Mixture of Varying Coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 45(3), pages 618-643, September.
    4. Mian Huang & Runze Li & Shaoli Wang, 2013. "Nonparametric Mixture of Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 929-941, September.
    5. Wang, Hansheng & Xia, Yingcun, 2009. "Shrinkage Estimation of the Varying Coefficient Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
    6. Khalili, Abbas & Chen, Jiahua, 2007. "Variable Selection in Finite Mixture of Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1025-1038, September.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    2. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    3. Heng Lian & Peng Lai & Hua Liang, 2013. "Partially Linear Structure Selection in Cox Models with Varying Coefficients," Biometrics, The International Biometric Society, vol. 69(2), pages 348-357, June.
    4. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    6. Ngai Hang Chan & Linhao Gao & Wilfredo Palma, 2022. "Simultaneous variable selection and structural identification for time‐varying coefficient models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 511-531, July.
    7. Weihua Zhao & Riquan Zhang & Jicai Liu, 2013. "Robust variable selection for the varying coefficient model based on composite L 1 -- L 2 regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2024-2040, September.
    8. Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.
    9. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
    10. Gerhard Tutz & Margret-Ruth Oelker, 2017. "Modelling Clustered Heterogeneity: Fixed Effects, Random Effects and Mixtures," International Statistical Review, International Statistical Institute, vol. 85(2), pages 204-227, August.
    11. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
    12. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    13. Noh, Hohsuk & Chung, Kwanghun & Van Keilegom, Ingrid, 2012. "Variable Selection of Varying Coefficient Models in Quantile Regression," LIDAM Discussion Papers ISBA 2012020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Heng Lian, 2012. "Variable selection in high-dimensional partly linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 825-839, December.
    15. Kong, Dehan & Bondell, Howard D. & Wu, Yichao, 2015. "Domain selection for the varying coefficient model via local polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 236-250.
    16. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
    17. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    18. Xia, Xiaochao & Yang, Hu & Li, Jialiang, 2016. "Feature screening for generalized varying coefficient models with application to dichotomous responses," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 85-97.
    19. Wang, Dewei & Kulasekera, K.B., 2012. "Parametric component detection and variable selection in varying-coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 117-129.
    20. Yue, Mu & Li, Jialiang & Cheng, Ming-Yen, 2019. "Two-step sparse boosting for high-dimensional longitudinal data with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 222-234.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3445-3457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.