Quantile regression for dynamic partially linear varying coefficient time series models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.jmva.2015.06.013
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Heng Lian, 2012. "Semiparametric Estimation of Additive Quantile Regression Models by Two-Fold Penalty," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 337-350, March.
- Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
- R. L. Eubank & Chunfeng Huang & Y. Muñoz Maldonado & Naisyin Wang & Suojin Wang & R. J. Buchanan, 2004. "Smoothing spline estimation in varying‐coefficient models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 653-667, August.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Cai, Zongwu & Xu, Xiaoping, 2009.
"Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
- Cai, Zongwu & Xu, Xiaoping, 2008. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1595-1608.
- Xiaoping Xu & Zongwu Cai, 2013. "Nonparametric Quantile Estimations For Dynamic Smooth Coefficient Models," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
- Wang, Hansheng & Xia, Yingcun, 2009. "Shrinkage Estimation of the Varying Coefficient Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
- Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
- Wang, Lan & Kai, Bo & Li, Runze, 2009. "Local Rank Inference for Varying Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1631-1645.
- J. Fan & J.‐T. Zhang, 2000. "Two‐step estimation of functional linear models with applications to longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 303-322.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Chiang C-T. & Rice J. A & Wu C. O, 2001. "Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 605-619, June.
- Li, Qi, 2000. "Efficient Estimation of Additive Partially Linear Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 1073-1092, November.
- Cai, Zongwu & Xiao, Zhijie, 2012.
"Semiparametric quantile regression estimation in dynamic models with partially varying coefficients,"
Journal of Econometrics, Elsevier, vol. 167(2), pages 413-425.
- Zongwu Cai & Zhijie Xiao, 2010. "Semiparametric Quantile Regression Estimation in Dynamic Models with Partially Varying Coefficients," Boston College Working Papers in Economics 761, Boston College Department of Economics.
- Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zishu Zhan & Yang Li & Yuhong Yang & Cunjie Lin, 2023. "Model averaging for semiparametric varying coefficient quantile regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 649-681, August.
- Jun Zhang & Bingqing Lin & Yan Zhou, 2024. "Linear regression models with multiplicative distortions under new identifiability conditions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(1), pages 25-67, February.
- Chang-Sheng Liu & Han-Ying Liang, 2023. "Bayesian empirical likelihood of quantile regression with missing observations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 285-313, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
- Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
- Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
- Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
- Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
- Long Feng & Changliang Zou & Zhaojun Wang & Xianwu Wei & Bin Chen, 2015. "Robust spline-based variable selection in varying coefficient model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(1), pages 85-118, January.
- Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
- Lili Yue & Gaorong Li & Heng Lian, 2019. "Identification and estimation in quantile varying-coefficient models with unknown link function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1251-1275, December.
- Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
- Qiu, Jia & Li, Degao & You, Jinhong, 2015. "SCAD-penalized regression for varying-coefficient models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 100-118.
- Xue-Jun Ma & Jing-Xiao Zhang, 2016. "A new variable selection approach for varying coefficient models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 59-72, January.
- Tang, Yanlin & Song, Xinyuan & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in high-dimensional quantile varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 115-132.
- Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
- Hidetoshi Matsui & Toshihiro Misumi, 2015. "Variable selection for varying-coefficient models with the sparse regularization," Computational Statistics, Springer, vol. 30(1), pages 43-55, March.
- Kong, Dehan & Bondell, Howard D. & Wu, Yichao, 2015. "Domain selection for the varying coefficient model via local polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 236-250.
- Chen, Yixin & Wang, Qin & Yao, Weixin, 2015. "Adaptive estimation for varying coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 17-31.
- Lai, Peng & Meng, Jie & Lian, Heng, 2015. "Polynomial spline approach for variable selection and estimation in varying coefficient models for time series data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 21-27.
- Tang Qingguo & Cheng Longsheng, 2008. "M-estimation and B-spline approximation for varying coefficient models with longitudinal data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(7), pages 611-625.
- Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
- Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.
More about this item
Keywords
Autoregressive models; Model structure recovery; SCAD penalty; Schwarz information criterion (SIC); Splines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:141:y:2015:i:c:p:49-66. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.