Time varying quantile Lasso
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Diebold, Francis X. & Yılmaz, Kamil, 2014.
"On the network topology of variance decompositions: Measuring the connectedness of financial firms,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," Koç University-TUSIAD Economic Research Forum Working Papers 1124, Koc University-TUSIAD Economic Research Forum.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Working Papers 11-45, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Kamil Yılmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," PIER Working Paper Archive 11-031, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold & Kamil Yilmaz, 2011. "On the Network Topology of Variance Decompositions: Measuring the Connectedness of Financial Firms," NBER Working Papers 17490, National Bureau of Economic Research, Inc.
- repec:ecb:ecbwps:20111426 is not listed on IDEAS
- Hsu, Nan-Jung & Hung, Hung-Lin & Chang, Ya-Mei, 2008. "Subset selection for vector autoregressive processes using Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3645-3657, March.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Hansheng Wang & Bo Li & Chenlei Leng, 2009. "Shrinkage tuning parameter selection with a diverging number of parameters," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(3), pages 671-683, June.
- Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015.
"Financial Network Systemic Risk Contributions,"
Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
- Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2011. "Financial network systemic risk contributions," SFB 649 Discussion Papers 2011-072, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2013. "Financial network systemic risk contributions," CFS Working Paper Series 2013/20, Center for Financial Studies (CFS).
- Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2011. "Financial Network Systemic Risk Contributions," SFB 649 Discussion Papers SFB649DP2011-072, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2012. "Financial Network Systemic Risk Contributions," SFB 649 Discussion Papers SFB649DP2012-053, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2012. "Financial network systemic risk contributions," SFB 649 Discussion Papers 2012-053, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hansheng Wang & Guodong Li & Chih‐Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78, February.
- Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
- Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016.
"TENET: Tail-Event driven NETwork risk,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
- Wolfgang Karl Härdle & Natalia Sirotko-Sibirskaya & Weining Wang, 2014. "TENET: Tail-Event driven NETwork risk," SFB 649 Discussion Papers SFB649DP2014-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Härdle, Wolfgang Karl & Sirotko-Sibirskaya, Natalia & Wang, Weining, 2014. "TENET: Tail-Event driven NETwork risk," SFB 649 Discussion Papers 2014-066, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
- Nardi, Y. & Rinaldo, A., 2011. "Autoregressive process modeling via the Lasso procedure," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 528-549, March.
- Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016.
"Systemic risk and the macroeconomy: An empirical evaluation,"
Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
- Stefano Giglio & Bryan T. Kelly & Seth Pruitt, 2015. "Systemic Risk and the Macroeconomy: An Empirical Evaluation," NBER Working Papers 20963, National Bureau of Economic Research, Inc.
- Eun Ryung Lee & Hohsuk Noh & Byeong U. Park, 2014. "Model Selection via Bayesian Information Criterion for Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 216-229, March.
- Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
- Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
- Audrino, Francesco & Camponovo, Lorenzo, 2013.
"Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models,"
Economics Working Paper Series
1327, University of St. Gallen, School of Economics and Political Science.
- Francesco Audrino & Lorenzo Camponovo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Papers 1312.1473, arXiv.org.
- Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2017.
"Adaptive LASSO estimation for ARDL models with GARCH innovations,"
Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 622-637, October.
- Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "Adaptative LASSO estimation for ARDL models with GARCH innovations," Textos para discussão 637, Department of Economics PUC-Rio (Brazil).
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Härdle, Wolfgang Karl & Sirotko-Sibirskaya, Natalia & Wang, Weining, 2014. "TENET: Tail-Event driven NETwork risk," SFB 649 Discussion Papers 2014-066, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Alessandro Gregorio & Francesco Iafrate, 2021. "Regularized bridge-type estimation with multiple penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 921-951, October.
- Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016.
"TENET: Tail-Event driven NETwork risk,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
- Wolfgang Karl Härdle & Natalia Sirotko-Sibirskaya & Weining Wang, 2014. "TENET: Tail-Event driven NETwork risk," SFB 649 Discussion Papers SFB649DP2014-066, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
- Härdle, Wolfgang Karl & Sirotko-Sibirskaya, Natalia & Wang, Weining, 2014. "TENET: Tail-Event driven NETwork risk," SFB 649 Discussion Papers 2014-066, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Leng, Chenlei & Li, Bo, 2010. "Least squares approximation with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 254-261, February.
- Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
- Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
- Stefano Maria IACUS & Alessandro DE GREGORIO, 2010. "Adaptive LASSO-type estimation for ergodic diffusion processes," Departmental Working Papers 2010-13, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.
- Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
- Kai Yang & Xue Ding & Xiaohui Yuan, 2022. "Bayesian empirical likelihood inference and order shrinkage for autoregressive models," Statistical Papers, Springer, vol. 63(1), pages 97-121, February.
- Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
- Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
- Matteo Barigozzi & Christian Brownlees, 2019.
"NETS: Network estimation for time series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
- Matteo Barigozzi & Christian T. Brownlees, 2013. "Nets: Network estimation for time series," Economics Working Papers 1391, Department of Economics and Business, Universitat Pompeu Fabra.
- Matteo Barigozzi & Christian Brownlees, 2013. "Nets: Network Estimation for Time Series," Working Papers 723, Barcelona School of Economics.
- Barigozzi, Matteo & Brownlees, Christian T., 2018. "Nets: network estimation for time series," LSE Research Online Documents on Economics 90493, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Lasso; quantile regression; systemic risk; high dimensions; penalization parameter;All these keywords.
JEL classification:
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- G01 - Financial Economics - - General - - - Financial Crises
- G20 - Financial Economics - - Financial Institutions and Services - - - General
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2016-11-13 (Econometrics)
- NEP-ORE-2016-11-13 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2016-047. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.