IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i1p316-326.html
   My bibliography  Save this article

High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis

Author

Listed:
  • Z. John Daye
  • Jinbo Chen
  • Hongzhe Li

Abstract

No abstract is available for this item.

Suggested Citation

  • Z. John Daye & Jinbo Chen & Hongzhe Li, 2012. "High-Dimensional Heteroscedastic Regression with an Application to eQTL Data Analysis," Biometrics, The International Biometric Society, vol. 68(1), pages 316-326, March.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:1:p:316-326
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01652.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    3. Wang, Hansheng & Li, Guodong & Jiang, Guohua, 2007. "Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 347-355, July.
    4. She, Yiyuan & Owen, Art B., 2011. "Outlier Detection Using Nonconvex Penalized Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 626-639.
    5. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    6. Jinfeng Xu & Zhiliang Ying, 2010. "Simultaneous estimation and variable selection in median regression using Lasso-type penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(3), pages 487-514, June.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Bin & Gao, Xiaoli, 2022. "High-dimensional robust approximated M-estimators for mean regression with asymmetric data," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. repec:cte:wsrepe:24534 is not listed on IDEAS
    3. Hokeun Sun & Hongzhe Li, 2012. "Robust Gaussian Graphical Modeling Via l 1 Penalization," Biometrics, The International Biometric Society, vol. 68(4), pages 1197-1206, December.
    4. Wang, Xia & Shojaie, Ali & Zou, Jian, 2019. "Bayesian hidden Markov models for dependent large-scale multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 123-136.
    5. Chiou, Hai-Tang & Guo, Meihui & Ing, Ching-Kang, 2020. "Variable selection for high-dimensional regression models with time series and heteroscedastic errors," Journal of Econometrics, Elsevier, vol. 216(1), pages 118-136.
    6. Zhang, Lyuou & Zhou, Wen & Wang, Haonan, 2021. "A semiparametric latent factor model for large scale temporal data with heteroscedasticity," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    7. Li, Zhaoyuan & Yao, Jianfeng, 2019. "Testing for heteroscedasticity in high-dimensional regressions," Econometrics and Statistics, Elsevier, vol. 9(C), pages 122-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    2. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    3. Qiang Li & Liming Wang, 2020. "Robust change point detection method via adaptive LAD-LASSO," Statistical Papers, Springer, vol. 61(1), pages 109-121, February.
    4. Barbato, Michele & Ceselli, Alberto, 2024. "Mathematical programming for simultaneous feature selection and outlier detection under l1 norm," European Journal of Operational Research, Elsevier, vol. 316(3), pages 1070-1084.
    5. Arslan, Olcay, 2012. "Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1952-1965.
    6. Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
    7. Weichi Wu & Zhou Zhou, 2017. "Nonparametric Inference for Time-Varying Coefficient Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 98-109, January.
    8. Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
    9. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    10. Chen, Kun & Huang, Rui & Chan, Ngai Hang & Yau, Chun Yip, 2019. "Subgroup analysis of zero-inflated Poisson regression model with applications to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 8-18.
    11. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    12. Elena McDonald & Xin Wang, 2024. "Generalized regression estimators with concave penalties and a comparison to lasso type estimators," METRON, Springer;Sapienza Università di Roma, vol. 82(2), pages 213-239, August.
    13. T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
    14. Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    15. Michael R. Wierzbicki & Li-Bing Guo & Qing-Tao Du & Wensheng Guo, 2014. "Sparse Semiparametric Nonlinear Model With Application to Chromatographic Fingerprints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1339-1349, December.
    16. Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
    17. Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
    18. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
    20. N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(1), pages 187-207, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:1:p:316-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.