IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v70y2014icp241-256.html
   My bibliography  Save this article

Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model

Author

Listed:
  • Lai, Peng
  • Wang, Qihua
  • Zhou, Xiao-Hua

Abstract

An efficient estimating equations procedure is developed for performing variable selection and defining semiparametric efficient estimates simultaneously for the heteroscedastic partially linear single-index model. The estimating equations are proposed based on the smooth threshold estimating equations by using the efficient score function of partially linear single-index models. And this estimating equations procedure can be used to perform variable selection without solving any convex optimization problems, and automatically eliminate nonsignificant variables by setting their coefficients as zero. The resulting estimators enjoy the oracle property and are semiparametrically efficient. The finite sample properties of the proposed estimators are illustrated by some simulation examples, as well as a real data application.

Suggested Citation

  • Lai, Peng & Wang, Qihua & Zhou, Xiao-Hua, 2014. "Variable selection and semiparametric efficient estimation for the heteroscedastic partially linear single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 241-256.
  • Handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:241-256
    DOI: 10.1016/j.csda.2013.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313003368
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Lixing Zhu & Liugen Xue, 2006. "Empirical likelihood confidence regions in a partially linear single‐index model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(3), pages 549-570, June.
    3. Yu Y. & Ruppert D., 2002. "Penalized Spline Estimation for Partially Linear Single-Index Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1042-1054, December.
    4. Xia, Yingcun & Härdle, Wolfgang, 2006. "Semi-parametric estimation of partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1162-1184, May.
    5. Yanyuan Ma & Jeng-Min Chiou & Naisyin Wang, 2006. "Efficient semiparametric estimator for heteroscedastic partially linear models," Biometrika, Biometrika Trust, vol. 93(1), pages 75-84, March.
    6. Zhao, Peixin & Xue, Liugen, 2009. "Variable selection for semiparametric varying coefficient partially linear models," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2148-2157, October.
    7. Zhu, Li-Ping & Zhu, Li-Xing, 2009. "Nonconcave penalized inverse regression in single-index models with high dimensional predictors," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 862-875, May.
    8. Liang, Hua & Li, Runze, 2009. "Variable Selection for Partially Linear Models With Measurement Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 234-248.
    9. Masao Ueki, 2009. "A note on automatic variable selection using smooth-threshold estimating equations," Biometrika, Biometrika Trust, vol. 96(4), pages 1005-1011.
    10. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    11. Efang Kong & Yingcun Xia, 2007. "Variable selection for the single‐index model," Biometrika, Biometrika Trust, vol. 94(1), pages 217-229.
    12. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peirong Xu & Jun Zhang & Xingfang Huang & Tao Wang, 2016. "Efficient estimation for marginal generalized partially linear single-index models with longitudinal data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-431, September.
    2. Lai, Peng & Zhang, Qingzhao & Lian, Heng & Wang, Qihua, 2016. "Efficient estimation for the heteroscedastic single-index varying coefficient models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 84-93.
    3. Peng Lai & Fangjian Wang & Tingyu Zhu & Qingzhao Zhang, 2021. "Model identification and selection for single-index varying-coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 457-480, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    2. Yongjin Li & Qingzhao Zhang & Qihua Wang, 2017. "Penalized estimation equation for an extended single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 169-187, February.
    3. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2015. "Quantile regression and variable selection of partial linear single-index model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 375-409, April.
    4. Yazhao Lv & Riquan Zhang & Weihua Zhao & Jicai Liu, 2014. "Quantile regression and variable selection for the single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1565-1577, July.
    5. Gueuning, Thomas & Claeskens, Gerda, 2016. "Confidence intervals for high-dimensional partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 13-29.
    6. Lian, Heng & Liang, Hua, 2016. "Separation of linear and index covariates in partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 56-70.
    7. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
    8. Lai, Peng & Wang, Qihua, 2014. "Semiparametric efficient estimation for partially linear single-index models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 33-50.
    9. Jun Zhang & Yao Yu & Li-Xing Zhu & Hua Liang, 2013. "Partial linear single index models with distortion measurement errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 237-267, April.
    10. Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
    11. Li-Ping Zhu & Lin-Yi Qian & Jin-Guan Lin, 2011. "Variable selection in a class of single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1277-1293, December.
    12. Jianglin Fang & Wanrong Liu & Xuewen Lu, 2018. "Empirical likelihood for heteroscedastic partially linear single-index models with growing dimensional data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(3), pages 255-281, April.
    13. Huang, Zhensheng & Lin, Bingqing & Feng, Fan & Pang, Zhen, 2013. "Efficient penalized estimating method in the partially varying-coefficient single-index model," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 189-200.
    14. Feng, Sanying & Xue, Liugen, 2015. "Model detection and estimation for single-index varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 227-244.
    15. Jiang, Rong & Qian, Wei-Min & Zhou, Zhan-Gong, 2016. "Weighted composite quantile regression for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 34-48.
    16. Yunquan Song & Yaqi Liu & Hang Su, 2022. "Robust Variable Selection for Single-Index Varying-Coefficient Model with Missing Data in Covariates," Mathematics, MDPI, vol. 10(12), pages 1-14, June.
    17. Cai, Zongwu & Juhl, Ted & Yang, Bingduo, 2015. "Functional index coefficient models with variable selection," Journal of Econometrics, Elsevier, vol. 189(2), pages 272-284.
    18. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    19. Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
    20. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:70:y:2014:i:c:p:241-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.