IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i2p1464-1482.html
   My bibliography  Save this article

Estimation and identification of latent group structures in panel data

Author

Listed:
  • Mehrabani, Ali

Abstract

This paper provides a framework for joint estimation and identification of latent group structures in panel data models using a pairwise fusion penalized approach. The latent structure of the model allows individuals to be classified into different groups where the number of groups and the group membership are unknown. The individuals within a group have common slope parameters, while parameter heterogeneity is allowed across the groups. A penalized least squares (PLS) approach is introduced for models with exogenous regressors. When the model contains endogenous regressors, a penalized generalized method of moment (PGMM) is introduced. To implement the proposed approach, an alternating direction method of multipliers algorithm has been developed. The proposed method is further illustrated by simulation studies which demonstrate the finite sample performance of the method, and is applied in an empirical analysis.

Suggested Citation

  • Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1464-1482
    DOI: 10.1016/j.jeconom.2022.12.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440762200207X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.12.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Bun, Maurice J.G. & Carree, Martin A., 2005. "Bias-Corrected Estimation in Dynamic Panel Data Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 200-210, April.
    3. Vasilis Sarafidis & Neville Weber, 2015. "A Partially Heterogeneous Framework for Analyzing Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(2), pages 274-296, April.
    4. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    5. Su, Liangjun & Chen, Qihui, 2013. "Testing Homogeneity In Panel Data Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1079-1135, December.
    6. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    7. Wuyi Wang & Peter C. B. Phillips & Liangjun Su, 2018. "Homogeneity pursuit in panel data models: Theory and application," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 797-815, September.
    8. Hoogstrate, Andre J & Palm, Franz C & Pfann, Gerard A, 2000. "Pooling in Dynamic Panel-Data Models: An Application to Forecasting GDP Growth Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 274-283, July.
    9. Xun Lu & Liangjun Su, 2017. "Determining the number of groups in latent panel structures with an application to income and democracy," Quantitative Economics, Econometric Society, vol. 8(3), pages 729-760, November.
    10. Deb Partha & Trivedi Pravin K., 2013. "Finite Mixture for Panels with Fixed Effects," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 35-51, July.
    11. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    12. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    13. Zhang, Yiyun & Li, Runze & Tsai, Chih-Ling, 2010. "Regularization Parameter Selections via Generalized Information Criterion," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 312-323.
    14. Bester, C. Alan & Hansen, Christian B., 2016. "Grouped effects estimators in fixed effects models," Journal of Econometrics, Elsevier, vol. 190(1), pages 197-208.
    15. Badi H. Baltagi & Susan Garvin & Stephen Kerman, 1989. "Further Monte Carlo Evidence on Seemingly Unrelated Regressions with Unequal Number of Observations," Annals of Economics and Statistics, GENES, issue 14, pages 103-115.
    16. Murillo Campello & Antonio F. Galvao & Ted Juhl, 2019. "Testing for Slope Heterogeneity Bias in Panel Data Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 749-760, October.
    17. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    18. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    19. Antonio F. Galvao & Kengo Kato, 2014. "Estimation and Inference for Linear Panel Data Models Under Misspecification When Both n and T are Large," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 285-309, April.
    20. Phillips, Peter C.B. & Sul, Donggyu, 2007. "Bias in dynamic panel estimation with fixed effects, incidental trends and cross section dependence," Journal of Econometrics, Elsevier, vol. 137(1), pages 162-188, March.
    21. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," Review of Economic Studies, Oxford University Press, vol. 82(3), pages 991-1030.
    22. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    23. Lin Chang-Ching & Ng Serena, 2012. "Estimation of Panel Data Models with Parameter Heterogeneity when Group Membership is Unknown," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 42-55, August.
    24. Han, Chirok & Phillips, Peter C. B. & Sul, Donggyu, 2014. "X-Differencing And Dynamic Panel Model Estimation," Econometric Theory, Cambridge University Press, vol. 30(1), pages 201-251, February.
    25. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
    26. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    27. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    28. Liangjun Su & Xia Wang & Sainan Jin, 2019. "Sieve Estimation of Time-Varying Panel Data Models With Latent Structures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 334-349, April.
    29. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    30. Sun, Yixiao X, 2005. "Estimation and Inference in Panel Structure Models," University of California at San Diego, Economics Working Paper Series qt5tf1231k, Department of Economics, UC San Diego.
    31. Hahn, Jinyong & Moon, Hyungsik Roger, 2010. "Panel Data Models With Finite Number Of Multiple Equilibria," Econometric Theory, Cambridge University Press, vol. 26(3), pages 863-881, June.
    32. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    33. Liu, Ruiqi & Shang, Zuofeng & Zhang, Yonghui & Zhou, Qiankun, 2020. "Identification and estimation in panel models with overspecified number of groups," Journal of Econometrics, Elsevier, vol. 215(2), pages 574-590.
    34. repec:adr:anecst:y:1989:i:14:p:05 is not listed on IDEAS
    35. Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
    36. Hiroyuki Kasahara & Katsumi Shimotsu, 2009. "Nonparametric Identification of Finite Mixture Models of Dynamic Discrete Choices," Econometrica, Econometric Society, vol. 77(1), pages 135-175, January.
    37. Wang, Wuyi & Su, Liangjun, 2021. "Identifying latent group structures in nonlinear panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 272-295.
    38. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    39. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    40. Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katerina Chrysikou & George Kapetanios, 2024. "Heterogeneous Grouping Structures in Panel Data," Papers 2407.19509, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okui, Ryo & Wang, Wendun, 2021. "Heterogeneous structural breaks in panel data models," Journal of Econometrics, Elsevier, vol. 220(2), pages 447-473.
    2. Wang, Wuyi & Su, Liangjun, 2021. "Identifying latent group structures in nonlinear panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 272-295.
    3. Miao, Ke & Su, Liangjun & Wang, Wendun, 2020. "Panel threshold regressions with latent group structures," Journal of Econometrics, Elsevier, vol. 214(2), pages 451-481.
    4. Liu, Ruiqi & Shang, Zuofeng & Zhang, Yonghui & Zhou, Qiankun, 2020. "Identification and estimation in panel models with overspecified number of groups," Journal of Econometrics, Elsevier, vol. 215(2), pages 574-590.
    5. Wang, Yiren & Phillips, Peter C.B. & Su, Liangjun, 2024. "Panel data models with time-varying latent group structures," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 923-941, October.
    7. Su, Liangjun & Wang, Wuyi & Xu, Xingbai, 2023. "Identifying latent group structures in spatial dynamic panels," Journal of Econometrics, Elsevier, vol. 235(2), pages 1955-1980.
    8. Jorge A. Rivero, 2023. "Unobserved Grouped Heteroskedasticity and Fixed Effects," Papers 2310.14068, arXiv.org, revised Oct 2023.
    9. Lumsdaine, Robin L. & Okui, Ryo & Wang, Wendun, 2023. "Estimation of panel group structure models with structural breaks in group memberships and coefficients," Journal of Econometrics, Elsevier, vol. 233(1), pages 45-65.
    10. Boyuan Zhang, 2022. "Incorporating Prior Knowledge of Latent Group Structure in Panel Data Models," Papers 2211.16714, arXiv.org, revised Oct 2023.
    11. Vasilis Sarafidis & Tom Wansbeek, 2020. "Celebrating 40 Years of Panel Data Analysis: Past, Present and Future," Monash Econometrics and Business Statistics Working Papers 6/20, Monash University, Department of Econometrics and Business Statistics.
    12. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    13. Yiren Wang & Liangjun Su & Yichong Zhang, 2022. "Low-rank Panel Quantile Regression: Estimation and Inference," Papers 2210.11062, arXiv.org.
    14. Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
    15. Yanbo Liu & Peter C. B. Phillips & Jun Yu, 2023. "A Panel Clustering Approach To Analyzing Bubble Behavior," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(4), pages 1347-1395, November.
    16. Katerina Chrysikou & George Kapetanios, 2024. "Heterogeneous Grouping Structures in Panel Data," Papers 2407.19509, arXiv.org.
    17. Leng, Xuan & Chen, Heng & Wang, Wendun, 2023. "Multi-dimensional latent group structures with heterogeneous distributions," Journal of Econometrics, Elsevier, vol. 233(1), pages 1-21.
    18. Lu, Xun & Su, Liangjun, 2023. "Uniform inference in linear panel data models with two-dimensional heterogeneity," Journal of Econometrics, Elsevier, vol. 235(2), pages 694-719.
    19. Gu, Jiaying & Volgushev, Stanislav, 2019. "Panel data quantile regression with grouped fixed effects," Journal of Econometrics, Elsevier, vol. 213(1), pages 68-91.
    20. Nibbering, D. & Paap, R., 2019. "Panel Forecasting with Asymmetric Grouping," Econometric Institute Research Papers EI-2019-30, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    More about this item

    Keywords

    ADMM algorithm; Classification; Dynamic panel; High dimensionality; Oracle property; Pairwise adaptive group fused Lasso; Parameter heterogeneity;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1464-1482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.