IDEAS home Printed from https://ideas.repec.org/r/bla/jorssb/v68y2006i1p49-67.html
   My bibliography  Save this item

Model selection and estimation in regression with grouped variables

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
  2. Honda, Toshio & Härdle, Wolfgang Karl, 2012. "Variable selection in Cox regression models with varying coefficients," SFB 649 Discussion Papers 2012-061, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  3. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers 56/15, Institute for Fiscal Studies.
  4. Naveen Naidu Narisetty, 2020. "Discussion," International Statistical Review, International Statistical Institute, vol. 88(2), pages 330-334, August.
  5. Aramayis Dallakyan, 2021. "Nonparanormal Structural VAR for Non-Gaussian Data," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1093-1113, April.
  6. Kwang Woo Ahn & Anjishnu Banerjee & Natasha Sahr & Soyoung Kim, 2018. "Group and within-group variable selection for competing risks data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 407-424, July.
  7. De Canditiis, Daniela & De Feis, Italia, 2019. "Simultaneous nonparametric regression in RADWT dictionaries," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 36-57.
  8. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
  9. Du, Pang & Cheng, Guang & Liang, Hua, 2012. "Semiparametric regression models with additive nonparametric components and high dimensional parametric components," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2006-2017.
  10. Juntao Wang & Yuan Li, 2023. "DINA Model with Entropy Penalization," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
  11. Ma, Shujie & Su, Liangjun, 2018. "Estimation of large dimensional factor models with an unknown number of breaks," Journal of Econometrics, Elsevier, vol. 207(1), pages 1-29.
  12. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2022. "Machine Learning Time Series Regressions With an Application to Nowcasting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1094-1106, June.
  13. Anwen Yin, 2022. "Does the kitchen‐sink model work forecasting the equity premium?," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 223-247, March.
  14. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
  15. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
  16. Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
  17. Patrick Breheny, 2015. "The group exponential lasso for bi‐level variable selection," Biometrics, The International Biometric Society, vol. 71(3), pages 731-740, September.
  18. Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
  19. Zhang, Yan-Qing & Tian, Guo-Liang & Tang, Nian-Sheng, 2016. "Latent variable selection in structural equation models," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 190-205.
  20. Gregorutti, Baptiste & Michel, Bertrand & Saint-Pierre, Philippe, 2015. "Grouped variable importance with random forests and application to multiple functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 15-35.
  21. Liu, Shu & You, Jinhong & Lian, Heng, 2017. "Estimation and model identification of longitudinal data time-varying nonparametric models," Journal of Multivariate Analysis, Elsevier, vol. 156(C), pages 116-136.
  22. Jie Xiong & Zhitong Bing & Yanlin Su & Defeng Deng & Xiaoning Peng, 2014. "An Integrated mRNA and microRNA Expression Signature for Glioblastoma Multiforme Prognosis," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-8, May.
  23. Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
  24. Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
  25. Tung Duy Luu & Jalal Fadili & Christophe Chesneau, 2021. "Sampling from Non-smooth Distributions Through Langevin Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1173-1201, December.
  26. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
  27. Karim Lounici & Massimiliano Pontil & Alexandre B. Tsybakov & Sara Van De Geer, 2010. "Oracle Inequalities and Optimal Inference under Group Sparsity," Working Papers 2010-35, Center for Research in Economics and Statistics.
  28. Lin S. Chen & Ross L. Prentice & Pei Wang, 2014. "A penalized EM algorithm incorporating missing data mechanism for Gaussian parameter estimation," Biometrics, The International Biometric Society, vol. 70(2), pages 312-322, June.
  29. Murat Genç & M. Revan Özkale, 2021. "Usage of the GO estimator in high dimensional linear models," Computational Statistics, Springer, vol. 36(1), pages 217-239, March.
  30. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.
  31. Lingyu Zhang & Xu Geng & Zhiwei Qin & Hongjun Wang & Xiao Wang & Ying Zhang & Jian Liang & Guobin Wu & Xuan Song & Yunhai Wang, 2022. "Multi-Modal Graph Interaction for Multi-Graph Convolution Network in Urban Spatiotemporal Forecasting," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
  32. Yanhang Zhang & Junxian Zhu & Jin Zhu & Xueqin Wang, 2023. "A Splicing Approach to Best Subset of Groups Selection," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 104-119, January.
  33. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
  34. HONDA, Toshio & 本田, 敏雄 & ING, Ching-Kang & WU, Wei-Ying, 2017. "Adaptively weighted group Lasso for semiparametric quantile regression models," Discussion Papers 2017-04, Graduate School of Economics, Hitotsubashi University.
  35. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
  36. Caner, Mehmet, 2023. "Generalized linear models with structured sparsity estimators," Journal of Econometrics, Elsevier, vol. 236(2).
  37. Faisal Maqbool Zahid & Shakeela Ramzan & Shahla Faisal & Ijaz Hussain, 2019. "Gender based survival prediction models for heart failure patients: A case study in Pakistan," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-10, February.
  38. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
  39. Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017. "A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks," Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
  40. Aki-Hiro Sato & Hideki Takayasu, 2013. "Segmentation procedure based on Fisher's exact test and its application to foreign exchange rates," Papers 1309.0602, arXiv.org.
  41. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
  42. Olga Gliko & Matt Mallory & Rachel Dalley & Rohan Gala & James Gornet & Hongkui Zeng & Staci A. Sorensen & Uygar Sümbül, 2024. "High-throughput analysis of dendrite and axonal arbors reveals transcriptomic correlates of neuroanatomy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  43. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
  44. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
  45. Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
  46. Storlie, Curtis B. & Reich, Brian J. & Helton, Jon C. & Swiler, Laura P. & Sallaberry, Cedric J., 2013. "Analysis of computationally demanding models with continuous and categorical inputs," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 30-41.
  47. Mingrui Zhong & Zanhua Yin & Zhichao Wang, 2023. "Variable Selection for Sparse Logistic Regression with Grouped Variables," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
  48. Zhao, Junlong & Niu, Lu & Zhan, Shushi, 2017. "Trace regression model with simultaneously low rank and row(column) sparse parameter," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 1-18.
  49. Karsten Schweikert, 2022. "Detecting Multiple Structural Breaks in Systems of Linear Regression Equations with Integrated and Stationary Regressors," Papers 2201.05430, arXiv.org, revised Sep 2024.
  50. Ismail Shah & Hina Naz & Sajid Ali & Amani Almohaimeed & Showkat Ahmad Lone, 2023. "A New Quantile-Based Approach for LASSO Estimation," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
  51. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
  52. Sai Wang & Bin-Yuan Wang & Hai-Fang Li, 2023. "A Novel Meta-Analysis-Based Regularized Orthogonal Matching Pursuit Algorithm to Predict Lung Cancer with Selected Biomarkers," Mathematics, MDPI, vol. 11(19), pages 1-13, October.
  53. Hess, Wolfgang & Persson, Maria & Rubenbauer, Stephanie & Gertheiss, Jan, 2013. "Using Lasso-Type Penalties to Model Time-Varying Covariate Effects in Panel Data Regressions – A Novel Approach Illustrated by the ‘Death of Distance’ in International Trade," Working Paper Series 961, Research Institute of Industrial Economics.
  54. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
  55. Xinyu Kang & Apratim Ganguly & Eric D. Kolaczyk, 2022. "Dynamic Networks with Multi-scale Temporal Structure," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 218-260, June.
  56. Berriel, Tiago & Medeiros, Marcelo C. & Sena, Marcelo J., 2016. "Instrument selection for estimation of a forward-looking Phillips Curve," Economics Letters, Elsevier, vol. 145(C), pages 123-125.
  57. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
  58. Daye, Z. John & Jeng, X. Jessie, 2009. "Shrinkage and model selection with correlated variables via weighted fusion," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1284-1298, February.
  59. Khai X. Chiong & Hyungsik Roger Moon, 2017. "Estimation of Graphical Models using the $L_{1,2}$ Norm," Papers 1709.10038, arXiv.org, revised Oct 2017.
  60. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
  61. Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
  62. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
  63. Hanwen Huang, 2017. "Controlling the false discoveries in LASSO," Biometrics, The International Biometric Society, vol. 73(4), pages 1102-1110, December.
  64. Xie Xiaodong & Zheng Shaozhi, 2017. "Group MCP for Cox Models with Time-Varying Coefficients," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 476-488, October.
  65. Guan Yu & Yufeng Liu, 2016. "Sparse Regression Incorporating Graphical Structure Among Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 707-720, April.
  66. Yen-Shiu Chin & Ting-Li Chen, 2016. "Minimizing variable selection criteria by Markov chain Monte Carlo," Computational Statistics, Springer, vol. 31(4), pages 1263-1286, December.
  67. Raanju R. Sundararajan & Wagner Barreto‐Souza, 2023. "Student‐t stochastic volatility model with composite likelihood EM‐algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(1), pages 125-147, January.
  68. Caiya Zhang & Yanbiao Xiang, 2016. "On the oracle property of adaptive group Lasso in high-dimensional linear models," Statistical Papers, Springer, vol. 57(1), pages 249-265, March.
  69. Weibing Li & Thierry Chekouo, 2022. "Bayesian group selection with non-local priors," Computational Statistics, Springer, vol. 37(1), pages 287-302, March.
  70. Alain Hecq & Marie Ternes & Ines Wilms, 2021. "Hierarchical Regularizers for Mixed-Frequency Vector Autoregressions," Papers 2102.11780, arXiv.org, revised Mar 2022.
  71. Charles‐Elie Rabier & Simona Grusea, 2021. "Prediction in high‐dimensional linear models and application to genomic selection under imperfect linkage disequilibrium," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1001-1026, August.
  72. Saptorshee Kanto Chakraborty & Massimiliano Mazzanti, 2021. "Revisiting the literature on the dynamic Environmental Kuznets Curves using a latent structure approach," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(3), pages 923-941, October.
  73. Lee, Kyu Ha & Chakraborty, Sounak & Sun, Jianguo, 2017. "Variable selection for high-dimensional genomic data with censored outcomes using group lasso prior," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 1-13.
  74. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
  75. Bin Luo & Xiaoli Gao, 2022. "A high-dimensional M-estimator framework for bi-level variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 559-579, June.
  76. Guojun Gan, 2018. "Valuation of Large Variable Annuity Portfolios Using Linear Models with Interactions," Risks, MDPI, vol. 6(3), pages 1-19, July.
  77. Skripnikov, A. & Michailidis, G., 2019. "Regularized joint estimation of related vector autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 164-177.
  78. Power, Michael Declan & Dong, Yuexiao, 2021. "Bayesian model averaging sliced inverse regression," Statistics & Probability Letters, Elsevier, vol. 174(C).
  79. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
  80. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
  81. Gerda Claeskens, 2012. "Focused estimation and model averaging with penalization methods: an overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 272-287, August.
  82. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
  83. J. Kenneth Tay & Robert Tibshirani, 2020. "Reluctant Generalised Additive Modelling," International Statistical Review, International Statistical Institute, vol. 88(S1), pages 205-224, December.
  84. Qiu, Debin & Ahn, Jeongyoun, 2020. "Grouped variable screening for ultra-high dimensional data for linear model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  85. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
  86. Xu Cheng & Zhipeng Liao & Frank Schorfheide, 2016. "Shrinkage Estimation of High-Dimensional Factor Models with Structural Instabilities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1511-1543.
  87. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
  88. Xiaoyi Yang & Nynke M. D. Niezink & Rebecca Nugent, 2021. "Learning social networks from text data using covariate information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1399-1423, December.
  89. Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
  90. Patric Müller & Sara Geer, 2016. "Censored linear model in high dimensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 75-92, March.
  91. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
  92. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
  93. Xia, Xiaochao & Yang, Hu & Li, Jialiang, 2016. "Feature screening for generalized varying coefficient models with application to dichotomous responses," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 85-97.
  94. Samuel Vaiter & Charles Deledalle & Jalal Fadili & Gabriel Peyré & Charles Dossal, 2017. "The degrees of freedom of partly smooth regularizers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 791-832, August.
  95. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
  96. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
  97. Warnke, Arne Jonas, 2017. "An investigation of record linkage refusal and its implications for empirical research," ZEW Discussion Papers 17-031, ZEW - Leibniz Centre for European Economic Research.
  98. Hui, Francis K.C. & Müller, Samuel & Welsh, A.H., 2020. "The LASSO on latent indices for regression modeling with ordinal categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
  99. Hai-Bin Zhang & Jiao-Jiao Jiang & Yun-Bin Zhao, 2015. "On the proximal Landweber Newton method for a class of nonsmooth convex problems," Computational Optimization and Applications, Springer, vol. 61(1), pages 79-99, May.
  100. Wei, Fengrong & Zhu, Hongxiao, 2012. "Group coordinate descent algorithms for nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 316-326.
  101. Ngai Hang Chan & Linhao Gao & Wilfredo Palma, 2022. "Simultaneous variable selection and structural identification for time‐varying coefficient models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 511-531, July.
  102. Tan Guo & Lei Zhang & Xiaoheng Tan & Liu Yang & Zhiwei Guo & Fupeng Wei, 2019. "CoLR: Classification-Oriented Local Representation for Image Recognition," Complexity, Hindawi, vol. 2019, pages 1-17, June.
  103. Benhuai Xie & Wei Pan & Xiaotong Shen, 2008. "Variable Selection in Penalized Model‐Based Clustering Via Regularization on Grouped Parameters," Biometrics, The International Biometric Society, vol. 64(3), pages 921-930, September.
  104. Artem Sokolov & Daniel E Carlin & Evan O Paull & Robert Baertsch & Joshua M Stuart, 2016. "Pathway-Based Genomics Prediction using Generalized Elastic Net," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-23, March.
  105. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
  106. Kaito Shimamura & Shuichi Kawano, 2021. "Bayesian sparse convex clustering via global-local shrinkage priors," Computational Statistics, Springer, vol. 36(4), pages 2671-2699, December.
  107. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
  108. Rafael Blanquero & Emilio Carrizosa & Pepa Ramírez-Cobo & M. Remedios Sillero-Denamiel, 2021. "A cost-sensitive constrained Lasso," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 121-158, March.
  109. Naoki Hamada & Shunsuke Ichiki, 2022. "Free Disposal Hull Condition to Verify When Efficiency Coincides with Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 248-270, January.
  110. Sunghoon Kwon & Jeongyoun Ahn & Woncheol Jang & Sangin Lee & Yongdai Kim, 2017. "A doubly sparse approach for group variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 997-1025, October.
  111. Virginia X. He & Matt P. Wand, 2024. "Bayesian generalized additive model selection including a fast variational option," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(3), pages 639-668, September.
  112. Luu, Tung Duy & Fadili, Jalal & Chesneau, Christophe, 2019. "PAC-Bayesian risk bounds for group-analysis sparse regression by exponential weighting," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 209-233.
  113. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.
  114. Jared D. Huling & Menggang Yu & Muxuan Liang & Maureen Smith, 2018. "Risk prediction for heterogeneous populations with application to hospital admission prediction," Biometrics, The International Biometric Society, vol. 74(2), pages 557-565, June.
  115. Mohit Agrawal & Joseph G. Altonji & Richard K. Mansfield, 2019. "Quantifying Family, School, and Location Effects in the Presence of Complementarities and Sorting," Journal of Labor Economics, University of Chicago Press, vol. 37(S1), pages 11-83.
  116. Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
  117. Piotr Swierkowski & Adrian Barnett, 2018. "Identification of hospital cost drivers using sparse group lasso," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-19, October.
  118. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
  119. G. Yi & J. Q. Shi & T. Choi, 2011. "Penalized Gaussian Process Regression and Classification for High-Dimensional Nonlinear Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1285-1294, December.
  120. Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
  121. Aaron J. Molstad & Keshav Motwani, 2023. "Multiresolution categorical regression for interpretable cell‐type annotation," Biometrics, The International Biometric Society, vol. 79(4), pages 3485-3496, December.
  122. T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
  123. Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
  124. Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
  125. Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
  126. Cui, Qiurong & Xu, Yuqing & Zhang, Zhengjun & Chan, Vincent, 2021. "Max-linear regression models with regularization," Journal of Econometrics, Elsevier, vol. 222(1), pages 579-600.
  127. Friedman, Jerome H., 2012. "Fast sparse regression and classification," International Journal of Forecasting, Elsevier, vol. 28(3), pages 722-738.
  128. R. Lopes & S. A. Santos & P. J. S. Silva, 2019. "Accelerating block coordinate descent methods with identification strategies," Computational Optimization and Applications, Springer, vol. 72(3), pages 609-640, April.
  129. repec:hum:wpaper:sfb649dp2012-061 is not listed on IDEAS
  130. He Jiang, 2023. "Robust forecasting in spatial autoregressive model with total variation regularization," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 195-211, March.
  131. Qing Zhou & Seunghyun Min, 2017. "Uncertainty quantification under group sparsity," Biometrika, Biometrika Trust, vol. 104(3), pages 613-632.
  132. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
  133. Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.
  134. Ballinari, Daniele & Behrendt, Simon, 2020. "Structural breaks in online investor sentiment: A note on the nonstationarity of financial chatter," Finance Research Letters, Elsevier, vol. 35(C).
  135. Yang Ann Shawing, 2015. "Measuring Self-Service Technology Latent Difficulties: Insurance Decisions on Utilitarian and Hedonic Influences," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 9(1), pages 1-33, January.
  136. repec:hum:wpaper:sfb649dp2010-039 is not listed on IDEAS
  137. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
  138. Aaron Hudson & Ali Shojaie, 2022. "Covariate-Adjusted Inference for Differential Analysis of High-Dimensional Networks," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 345-388, June.
  139. Abdallah Mkhadri & Mohamed Ouhourane, 2015. "A group VISA algorithm for variable selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 41-60, March.
  140. Eftychios A Pnevmatikakis & Keith Kelleher & Rebecca Chen & Petter Saggau & Krešimir Josić & Liam Paninski, 2012. "Fast Spatiotemporal Smoothing of Calcium Measurements in Dendritic Trees," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-17, June.
  141. Yu, Lining & Härdle, Wolfgang Karl & Borke, Lukas & Benschop, Thijs, 2017. "FRM: A financial risk meter based on penalizing tail events occurrence," SFB 649 Discussion Papers 2017-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  142. Zhong, Wei & Liu, Xi & Ma, Shuangge, 2018. "Variable selection and direction estimation for single-index models via DC-TGDR method," IRTG 1792 Discussion Papers 2018-050, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  143. Zhang, Ting, 2015. "Semiparametric model building for regression models with time-varying parameters," Journal of Econometrics, Elsevier, vol. 187(1), pages 189-200.
  144. Qing Wang & Dan Zhao, 2019. "Penalization methods with group-wise sparsity: econometric applications to eBay Motors online auctions," Empirical Economics, Springer, vol. 57(2), pages 683-704, August.
  145. Saptarshi Chakraborty & Colin B. Begg & Ronglai Shen, 2021. "Using the “Hidden” genome to improve classification of cancer types," Biometrics, The International Biometric Society, vol. 77(4), pages 1445-1455, December.
  146. Zambom, Adriano Zanin & Akritas, Michael G., 2015. "Nonparametric significance testing and group variable selection," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 51-60.
  147. repec:hum:wpaper:sfb649dp2017-003 is not listed on IDEAS
  148. Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
  149. Yongxin Liu & Peng Zeng & Lu Lin, 2021. "Degrees of freedom for regularized regression with Huber loss and linear constraints," Statistical Papers, Springer, vol. 62(5), pages 2383-2405, October.
  150. Shizhe Chen & Ali Shojaie & Daniela M. Witten, 2017. "Network Reconstruction From High-Dimensional Ordinary Differential Equations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1697-1707, October.
  151. Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
  152. Burman, Prabir & Paul, Debashis, 2017. "Smooth predictive model fitting in regression," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 165-179.
  153. Gerhard Tutz & Margret-Ruth Oelker, 2017. "Modelling Clustered Heterogeneity: Fixed Effects, Random Effects and Mixtures," International Statistical Review, International Statistical Institute, vol. 85(2), pages 204-227, August.
  154. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.
  155. Zhang, Tingting & Pham, Minh & Yan, Guofen & Wang, Yaotian & Medina-DeVilliers, Sara & Coan, James A., 2024. "Spatial-Temporal Analysis of Multi-Subject Functional Magnetic Resonance Imaging Data," Econometrics and Statistics, Elsevier, vol. 31(C), pages 117-129.
  156. Zhao, Shangwei & Zhou, Jianhong & Li, Hongjun, 2016. "Model averaging with high-dimensional dependent data," Economics Letters, Elsevier, vol. 148(C), pages 68-71.
  157. Xavier Angerri & Karina Gibert, 2023. "Variable Selection for Meaningful Clustering of Multitopic Territorial Data," Mathematics, MDPI, vol. 11(13), pages 1-33, June.
  158. Toshiki Sato & Yuichi Takano & Takanobu Nakahara, 2019. "Investigating consumers’ store-choice behavior via hierarchical variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 621-639, September.
  159. Youzhi Qu & Kai Fu & Linjing Wang & Yu Zhang & Haiyan Wu & Quanying Liu, 2024. "Hypergraph-Based Multitask Feature Selection with Temporally Constrained Group Sparsity Learning on fMRI," Mathematics, MDPI, vol. 12(11), pages 1-16, June.
  160. Silvia Villa & Lorenzo Rosasco & Sofia Mosci & Alessandro Verri, 2014. "Proximal methods for the latent group lasso penalty," Computational Optimization and Applications, Springer, vol. 58(2), pages 381-407, June.
  161. Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
  162. Juan C. Laria & M. Carmen Aguilera-Morillo & Enrique Álvarez & Rosa E. Lillo & Sara López-Taruella & María del Monte-Millán & Antonio C. Picornell & Miguel Martín & Juan Romo, 2021. "Iterative Variable Selection for High-Dimensional Data: Prediction of Pathological Response in Triple-Negative Breast Cancer," Mathematics, MDPI, vol. 9(3), pages 1-14, January.
  163. repec:kan:wpaper:202105 is not listed on IDEAS
  164. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).
  165. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
  166. He, Xin & Mao, Xiaojun & Wang, Zhonglei, 2024. "Nonparametric augmented probability weighting with sparsity," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
  167. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
  168. Jin Liu & Jian Huang & Yawei Zhang & Qing Lan & Nathaniel Rothman & Tongzhang Zheng & Shuangge Ma, 2014. "Integrative analysis of prognosis data on multiple cancer subtypes," Biometrics, The International Biometric Society, vol. 70(3), pages 480-488, September.
  169. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
  170. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
  171. Goh, Gyuhyeong & Dey, Dipak K. & Chen, Kun, 2017. "Bayesian sparse reduced rank multivariate regression," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 14-28.
  172. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
  173. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
  174. Wenyan Zhong & Xuewen Lu & Jingjing Wu, 2021. "Bi-level variable selection in semiparametric transformation models with right-censored data," Computational Statistics, Springer, vol. 36(3), pages 1661-1692, September.
  175. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
  176. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
  177. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
  178. Jiaqi Zhang & Xinyan Fan & Yang Li & Shuangge Ma, 2022. "Heterogeneous graphical model for non‐negative and non‐Gaussian PM2.5 data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1303-1329, November.
  179. Wu, Runxiong & Chen, Xin, 2021. "MM algorithms for distance covariance based sufficient dimension reduction and sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
  180. Jin, Fei & Lee, Lung-fei, 2018. "Irregular N2SLS and LASSO estimation of the matrix exponential spatial specification model," Journal of Econometrics, Elsevier, vol. 206(2), pages 336-358.
  181. A. Karagrigoriou & C. Koukouvinos & K. Mylona, 2010. "On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-24.
  182. Noh, Hohsuk & Chung, Kwanghun & Van Keilegom, Ingrid, 2012. "Variable Selection of Varying Coefficient Models in Quantile Regression," LIDAM Discussion Papers ISBA 2012020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  183. Hidetoshi Matsui & Toshihiro Misumi, 2015. "Variable selection for varying-coefficient models with the sparse regularization," Computational Statistics, Springer, vol. 30(1), pages 43-55, March.
  184. David Puelz & Carlos M. Carvalho & P. Richard Hahn, 2015. "Optimal ETF Selection for Passive Investing," Papers 1510.03385, arXiv.org, revised Nov 2015.
  185. Park, Seyoung & Kim, Hyunjin & Lee, Eun Ryung, 2023. "Regional quantile regression for multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
  186. Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
  187. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
  188. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
  189. Ai Ni & Jianwen Cai, 2018. "A regularized variable selection procedure in additive hazards model with stratified case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 443-463, July.
  190. Aneiros, Germán & Vieu, Philippe, 2014. "Variable selection in infinite-dimensional problems," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 12-20.
  191. Faguang Wen & Jiming Jiang & Yihui Luan, 2024. "Model Selection Path and Construction of Model Confidence Set under High-Dimensional Variables," Mathematics, MDPI, vol. 12(5), pages 1-21, February.
  192. Reetika Sarkar & Sithija Manage & Xiaoli Gao, 2024. "Stable Variable Selection for High-Dimensional Genomic Data with Strong Correlations," Annals of Data Science, Springer, vol. 11(4), pages 1139-1164, August.
  193. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
  194. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
  195. Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
  196. Jun Sun & Lingchen Kong & Biao Qu, 2023. "A Greedy Newton-Type Method for Multiple Sparse Constraint Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 829-854, March.
  197. Sardy, Sylvain & Diaz-Rodriguez, Jairo & Giacobino, Caroline, 2022. "Thresholding tests based on affine LASSO to achieve non-asymptotic nominal level and high power under sparse and dense alternatives in high dimension," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
  198. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
  199. Xinlei Zuo & Juan Ding & Junjian Zhang & Wenjun Xiong, 2024. "Nonparametric Additive Regression for High-Dimensional Group Testing Data," Mathematics, MDPI, vol. 12(5), pages 1-21, February.
  200. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
  201. Umberto Amato & Anestis Antoniadis & Italia De Feis, 2016. "Additive model selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 519-564, November.
  202. Hu, Jianhua & Xin, Xin & You, Jinhong, 2014. "Model determination and estimation for the growth curve model via group SCAD penalty," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 199-213.
  203. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
  204. Chen, Shunjie & Yang, Sijia & Wang, Pei & Xue, Liugen, 2023. "Two-stage penalized algorithms via integrating prior information improve gene selection from omics data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
  205. Wu, Lan & Yang, Yuehan & Liu, Hanzhong, 2014. "Nonnegative-lasso and application in index tracking," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 116-126.
  206. Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
  207. Xiaoli Gao, 2018. "A flexible shrinkage operator for fussy grouped variable selection," Statistical Papers, Springer, vol. 59(3), pages 985-1008, September.
  208. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
  209. Jun Zhang & Zhenghui Feng & Peirong Xu & Hua Liang, 2017. "Generalized varying coefficient partially linear measurement errors models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 97-120, February.
  210. Wang, Dewei & Kulasekera, K.B., 2012. "Parametric component detection and variable selection in varying-coefficient partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 117-129.
  211. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
  212. Yuen, T.P. & Wong, H. & Yiu, K.F.C., 2018. "On constrained estimation of graphical time series models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 27-52.
  213. Weihua Zhao & Riquan Zhang & Jicai Liu, 2013. "Robust variable selection for the varying coefficient model based on composite L 1 -- L 2 regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 2024-2040, September.
  214. Calvo-Pardo, Hector & Mancini, Tullio & Olmo, Jose, 2021. "Granger causality detection in high-dimensional systems using feedforward neural networks," International Journal of Forecasting, Elsevier, vol. 37(2), pages 920-940.
  215. Groll, Andreas & Hambuckers, Julien & Kneib, Thomas & Umlauf, Nikolaus, 2019. "LASSO-type penalization in the framework of generalized additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 59-73.
  216. Lee, Chia-Yen & Cai, Jia-Ying, 2020. "LASSO variable selection in data envelopment analysis with small datasets," Omega, Elsevier, vol. 91(C).
  217. Kim, Nam-Hwui & Browne, Ryan P., 2021. "In the pursuit of sparseness: A new rank-preserving penalty for a finite mixture of factor analyzers," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
  218. Wang, Guochang & Su, Yan & Shu, Lianjie, 2016. "One-day-ahead daily power forecasting of photovoltaic systems based on partial functional linear regression models," Renewable Energy, Elsevier, vol. 96(PA), pages 469-478.
  219. Bin Chen & Kenwin Maung, 2020. "Time-varying Forecast Combination for High-Dimensional Data," Papers 2010.10435, arXiv.org.
  220. Mike K. P. So & Wing Ki Liu & Amanda M. Y. Chu, 2018. "Bayesian Shrinkage Estimation Of Time-Varying Covariance Matrices In Financial Time Series," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 369-404, December.
  221. Sabyasachi Kar & Amaani Bashir & Mayank Jain, 2021. "New Approaches to Forecasting Growth and Inflation: Big Data and Machine Learning," IEG Working Papers 446, Institute of Economic Growth.
  222. Yen, Tso-Jung & Yen, Yu-Min, 2016. "Structured variable selection via prior-induced hierarchical penalty functions," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 87-103.
  223. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
  224. Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
  225. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
  226. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
  227. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
  228. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
  229. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
  230. Hafner, Christian & Wang, Linqi, 2020. "Dynamic portfolio selection with sector-specific regularization," LIDAM Discussion Papers ISBA 2020032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  231. Kaixu Yang & Tapabrata Maiti, 2022. "Ultrahigh‐dimensional generalized additive model: Unified theory and methods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 917-942, September.
  232. Liu, Jicai & Si, Yuefeng & Niu, Yong & Zhang, Riquan, 2022. "Projection quantile correlation and its use in high-dimensional grouped variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  233. Cai, Zongwu & Juhl, Ted & Yang, Bingduo, 2015. "Functional index coefficient models with variable selection," Journal of Econometrics, Elsevier, vol. 189(2), pages 272-284.
  234. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
  235. Yumei Ren & Guoqiang Tang & Xin Li & Xuchang Chen, 2023. "A Study of Multifactor Quantitative Stock-Selection Strategies Incorporating Knockoff and Elastic Net-Logistic Regression," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
  236. Liu, Xi & Divani, Afshin A. & Petersen, Alexander, 2022. "Truncated estimation in functional generalized linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
  237. Liu, Xianhui & Wang, Zhanfeng & Wu, Yaohua, 2013. "Group variable selection and estimation in the tobit censored response model," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 80-89.
  238. Qihang Lin & Xi Chen & Javier Peña, 2014. "A sparsity preserving stochastic gradient methods for sparse regression," Computational Optimization and Applications, Springer, vol. 58(2), pages 455-482, June.
  239. Baek, Seungchul & Hoyoung, Park & Park, Junyong, 2024. "Variable selection using data splitting and projection for principal fitted component models in high dimension," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
  240. Wang, Jianqiu & Wu, Ke & Tong, Guoshi & Chen, Dongxu, 2023. "Nonlinearity in the cross-section of stock returns: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 174-205.
  241. Alvaro Mendez-Civieta & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2021. "Adaptive sparse group LASSO in quantile regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 547-573, September.
  242. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
  243. Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions," CREATES Research Papers 2012-38, Department of Economics and Business Economics, Aarhus University.
  244. Min Chen & Yimin Lian & Zhao Chen & Zhengjun Zhang, 2017. "Sure explained variability and independence screening," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 849-883, October.
  245. Choi, Sungwoo & Park, Junyong, 2014. "Nonparametric additive model with grouped lasso and maximizing area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 313-325.
  246. Sangahn Kim & Mehmet Turkoz & Myong K. Jeong & Elsayed A. Elsayed, 2024. "Monitoring of group-structured high-dimensional processes via sparse group LASSO," Annals of Operations Research, Springer, vol. 340(2), pages 891-911, September.
  247. Bastien Marquis & Maarten Jansen, 2022. "Information criteria bias correction for group selection," Statistical Papers, Springer, vol. 63(5), pages 1387-1414, October.
  248. Wenning Feng & Abdhi Sarkar & Chae Young Lim & Tapabrata Maiti, 2016. "Variable selection for binary spatial regression: Penalized quasi‐likelihood approach," Biometrics, The International Biometric Society, vol. 72(4), pages 1164-1172, December.
  249. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
  250. Steven Andrew Culpepper & Trevor Park, 2017. "Bayesian Estimation of Multivariate Latent Regression Models: Gauss Versus Laplace," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 591-616, October.
  251. Heng Lian, 2012. "Variable selection in high-dimensional partly linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 825-839, December.
  252. Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
  253. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
  254. Zhou Yu & Yuexiao Dong & Li-Xing Zhu, 2016. "Trace Pursuit: A General Framework for Model-Free Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 813-821, April.
  255. Byeong U. Park & Enno Mammen & Young K. Lee & Eun Ryung Lee, 2015. "Varying Coefficient Regression Models: A Review and New Developments," International Statistical Review, International Statistical Institute, vol. 83(1), pages 36-64, April.
  256. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
  257. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
  258. Wei Pan & Benhuai Xie & Xiaotong Shen, 2010. "Incorporating Predictor Network in Penalized Regression with Application to Microarray Data," Biometrics, The International Biometric Society, vol. 66(2), pages 474-484, June.
  259. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
  260. Jiang, He & Luo, Shihua & Dong, Yao, 2021. "Simultaneous feature selection and clustering based on square root optimization," European Journal of Operational Research, Elsevier, vol. 289(1), pages 214-231.
  261. Vahid Nassiri & Ignace Loris, 2014. "An efficient algorithm for structured sparse quantile regression," Computational Statistics, Springer, vol. 29(5), pages 1321-1343, October.
  262. Song Song & Wolfgang K. Härdle & Ya'acov Ritov, 2014. "Generalized dynamic semi‐parametric factor models for high‐dimensional non‐stationary time series," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 101-131, June.
  263. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2022. "News media versus FRED‐MD for macroeconomic forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 63-81, January.
  264. Chen, Ya & Tsionas, Mike G. & Zelenyuk, Valentin, 2021. "LASSO+DEA for small and big wide data," Omega, Elsevier, vol. 102(C).
  265. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
  266. Nguyen, Hang & Sherris, Michael & Villegas, Andrés M. & Ziveyi, Jonathan, 2024. "Scenario selection with LASSO regression for the valuation of variable annuity portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 27-43.
  267. Yulan Liu & Shujun Bi & Shaohua Pan, 2018. "Equivalent Lipschitz surrogates for zero-norm and rank optimization problems," Journal of Global Optimization, Springer, vol. 72(4), pages 679-704, December.
  268. Mareckova, Jana & Pohlmeier, Winfried, 2017. "Noncognitive Skills and Labor Market Outcomes: A Machine Learning Approach," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168195, Verein für Socialpolitik / German Economic Association.
  269. Bingduo Yang & Zongwu Cai & Christian M. Hafner & Guannan Liu, 2018. "Trending Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201809, University of Kansas, Department of Economics, revised Sep 2018.
  270. David Lamparter & Rajat Bhatnagar & Katja Hebestreit & T Grant Belgard & Alice Zhang & Victor Hanson-Smith, 2020. "A framework for integrating directed and undirected annotations to build explanatory models of cis-eQTL data," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
  271. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  272. Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
  273. Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
  274. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
  275. Devijver, Emilie, 2017. "Joint rank and variable selection for parsimonious estimation in a high-dimensional finite mixture regression model," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 1-13.
  276. Mehmet Caner & Xu Han, 2014. "Selecting the Correct Number of Factors in Approximate Factor Models: The Large Panel Case With Group Bridge Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 359-374, July.
  277. Ngai Hang Chan & Chun Yip Yau & Rong-Mao Zhang, 2014. "Group LASSO for Structural Break Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 590-599, June.
  278. Matsui, Hidetoshi & Konishi, Sadanori, 2011. "Variable selection for functional regression models via the L1 regularization," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3304-3310, December.
  279. Yunquan Song & Minmin Zhan & Yue Zhang & Yongxin Liu, 2024. "Huber Loss Meets Spatial Autoregressive Model: A Robust Variable Selection Method with Prior Information," Networks and Spatial Economics, Springer, vol. 24(1), pages 291-311, March.
  280. Gabriela Ciuperca, 2019. "Adaptive group LASSO selection in quantile models," Statistical Papers, Springer, vol. 60(1), pages 173-197, February.
  281. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
  282. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
  283. Yongchan Kwon & Sokbae Lee & Guillaume A. Pouliot, 2024. "Group Shapley Value and Counterfactual Simulations in a Structural Model," Papers 2410.06875, arXiv.org.
  284. Hoff, Peter D., 2017. "Lasso, fractional norm and structured sparse estimation using a Hadamard product parametrization," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 186-198.
  285. Yongxiu Cao & Jian Huang & Yanyan Liu & Xingqiu Zhao, 2016. "Sieve estimation of Cox models with latent structures," Biometrics, The International Biometric Society, vol. 72(4), pages 1086-1097, December.
  286. Kristoffer H. Hellton, 2023. "Penalized angular regression for personalized predictions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 184-212, March.
  287. Koike, Yuta & Tanoue, Yuta, 2019. "Oracle inequalities for sign constrained generalized linear models," Econometrics and Statistics, Elsevier, vol. 11(C), pages 145-157.
  288. Faisal Maqbool Zahid & Gerhard Tutz, 2013. "Proportional Odds Models with High‐Dimensional Data Structure," International Statistical Review, International Statistical Institute, vol. 81(3), pages 388-406, December.
  289. Gerardo Alfonso & Daniel R. Ramirez, 2020. "A Nonlinear Technical Indicator Selection Approach for Stock Markets. Application to the Chinese Stock Market," Mathematics, MDPI, vol. 8(8), pages 1-15, August.
  290. Yi Zhao & Bingkai Wang & Chin‐Fu Liu & Andreia V. Faria & Michael I. Miller & Brian S. Caffo & Xi Luo, 2023. "Identifying brain hierarchical structures associated with Alzheimer's disease using a regularized regression method with tree predictors," Biometrics, The International Biometric Society, vol. 79(3), pages 2333-2345, September.
  291. Shota Yamanaka & Nobuo Yamashita, 2018. "Duality of nonconvex optimization with positively homogeneous functions," Computational Optimization and Applications, Springer, vol. 71(2), pages 435-456, November.
  292. Ting‐Huei Chen & Hanaa Boughal, 2021. "A penalized structural equation modeling method accounting for secondary phenotypes for variable selection on genetically regulated expression from PrediXcan for Alzheimer's disease," Biometrics, The International Biometric Society, vol. 77(1), pages 362-371, March.
  293. Kong, Dehan & Bondell, Howard D. & Wu, Yichao, 2015. "Domain selection for the varying coefficient model via local polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 236-250.
  294. Ovielt Baltodano L'opez & Roberto Casarin, 2022. "A Dynamic Stochastic Block Model for Multi-Layer Networks," Papers 2209.09354, arXiv.org.
  295. Zhigeng Geng & Sijian Wang & Menggang Yu & Patrick O. Monahan & Victoria Champion & Grace Wahba, 2015. "Group variable selection via convex log-exp-sum penalty with application to a breast cancer survivor study," Biometrics, The International Biometric Society, vol. 71(1), pages 53-62, March.
  296. Fei Liu & David Dunson & Fei Zou, 2011. "High-Dimensional Variable Selection in Meta-Analysis for Censored Data," Biometrics, The International Biometric Society, vol. 67(2), pages 504-512, June.
  297. Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
  298. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
  299. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
  300. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
  301. Feng Li & Yajie Li & Sanying Feng, 2021. "Estimation for Varying Coefficient Models with Hierarchical Structure," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
  302. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
  303. Simila, Timo & Tikka, Jarkko, 2007. "Input selection and shrinkage in multiresponse linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 406-422, September.
  304. Brendan P. W. Ames & Mingyi Hong, 2016. "Alternating direction method of multipliers for penalized zero-variance discriminant analysis," Computational Optimization and Applications, Springer, vol. 64(3), pages 725-754, July.
  305. Yuxiang Wu & Hui Zhao & Jianguo Sun, 2023. "Group variable selection for the Cox model with interval‐censored failure time data," Biometrics, The International Biometric Society, vol. 79(4), pages 3082-3095, December.
  306. Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  307. Mikio Ito, 2022. "Detecting Structural Breaks in Foreign Exchange Markets by using the group LASSO technique," Papers 2202.02988, arXiv.org.
  308. Noh, Hohsuk & Lee, Eun, 2012. "Component Selection in Additive Quantile Regression Models," LIDAM Discussion Papers ISBA 2012021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  309. Daehan Won & Hasan Manzour & Wanpracha Chaovalitwongse, 2020. "Convex Optimization for Group Feature Selection in Networked Data," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 182-198, January.
  310. Wei Tang & Steven L Bressler & Chad M Sylvester & Gordon L Shulman & Maurizio Corbetta, 2012. "Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-14, May.
  311. Siddhartha Nandy & Chae Young Lim & Tapabrata Maiti, 2017. "Additive model building for spatial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 779-800, June.
  312. Lian, Heng & Meng, Jie & Zhao, Kaifeng, 2015. "Spline estimator for simultaneous variable selection and constant coefficient identification in high-dimensional generalized varying-coefficient models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 81-103.
  313. Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 0. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-15.
  314. Chen, Ying & Niu, Linlin & Chen, Ray-Bing & He, Qiang, 2019. "Sparse-Group Independent Component Analysis with application to yield curves prediction," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 76-89.
  315. Ruidi Chen & Ioannis Ch. Paschalidis, 2022. "Robust Grouped Variable Selection Using Distributionally Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1042-1071, September.
  316. Sandra Stankiewicz, 2015. "Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net," Working Paper Series of the Department of Economics, University of Konstanz 2015-12, Department of Economics, University of Konstanz.
  317. Faisal Maqbool Zahid & Shahla Faisal & Christian Heumann, 2020. "Variable selection techniques after multiple imputation in high-dimensional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 553-580, September.
  318. Guy P. Nason & Ben Powell & Duncan Elliott & Paul A. Smith, 2017. "Should we sample a time series more frequently?: decision support via multirate spectrum estimation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 353-407, February.
  319. Dindaroglu, Burak & Ertac, Seda, 2024. "An empirical study of sequential offer bargaining during the Festival of Sacrifice," Journal of Economic Psychology, Elsevier, vol. 101(C).
  320. Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
  321. Fang, Qian & Yu, Chen & Weiping, Zhang, 2020. "Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
  322. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
  323. Jiawei Hou & Yunquan Song, 2022. "Interquantile shrinkage in spatial additive autoregressive models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1030-1057, December.
  324. Sida Peng, 2019. "Heterogeneous Endogenous Effects in Networks," Papers 1908.00663, arXiv.org.
  325. Yi Tan & Prakash P. Shenoy & Ben Sherwood & Catherine Shenoy & Melinda Gaddy & Mary E. Oehlert, 2024. "Bayesian Network Models for PTSD Screening in Veterans," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 495-509, March.
  326. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
  327. Xian Zhang & Dingtao Peng, 2022. "Solving constrained nonsmooth group sparse optimization via group Capped- $$\ell _1$$ ℓ 1 relaxation and group smoothing proximal gradient algorithm," Computational Optimization and Applications, Springer, vol. 83(3), pages 801-844, December.
  328. Bergersen, Linn Cecilie & Tharmaratnam, Kukatharmini & Glad, Ingrid K., 2014. "Monotone splines lasso," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 336-351.
  329. Yue, Mu & Li, Jialiang & Cheng, Ming-Yen, 2019. "Two-step sparse boosting for high-dimensional longitudinal data with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 222-234.
  330. Dimitris Bertsimas & Angela King, 2016. "OR Forum—An Algorithmic Approach to Linear Regression," Operations Research, INFORMS, vol. 64(1), pages 2-16, February.
  331. Bergersen Linn Cecilie & Glad Ingrid K. & Lyng Heidi, 2011. "Weighted Lasso with Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-29, August.
  332. Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2022. "Objective Bayesian group variable selection for linear model," Computational Statistics, Springer, vol. 37(3), pages 1287-1310, July.
  333. Charbonnier Camille & Chiquet Julien & Ambroise Christophe, 2010. "Weighted-LASSO for Structured Network Inference from Time Course Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-29, February.
  334. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
  335. Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
  336. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
  337. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
  338. Zhenghui Feng & Lu Lin & Ruoqing Zhu & Lixing Zhu, 2020. "Nonparametric variable selection and its application to additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 827-854, June.
  339. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
  340. Xin Cheng & Wenbin Lu & Mengling Liu, 2015. "Identification of homogeneous and heterogeneous variables in pooled cohort studies," Biometrics, The International Biometric Society, vol. 71(2), pages 397-403, June.
  341. Wang, Yueyao & Lee, I-Chen & Hong, Yili & Deng, Xinwei, 2022. "Building degradation index with variable selection for multivariate sensory data," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
  342. Howard D. Bondell & Brian J. Reich, 2008. "Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR," Biometrics, The International Biometric Society, vol. 64(1), pages 115-123, March.
  343. Marra, Giampiero & Wood, Simon N., 2011. "Practical variable selection for generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2372-2387, July.
  344. Zheng, Tingguo & Fan, Xinyue & Jin, Wei & Fang, Kuangnan, 2024. "Words or numbers? Macroeconomic nowcasting with textual and macroeconomic data," International Journal of Forecasting, Elsevier, vol. 40(2), pages 746-761.
  345. Gabriel E Hoffman & Benjamin A Logsdon & Jason G Mezey, 2013. "PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
  346. Lian, Heng & Feng, Sanying & Zhao, Kaifeng, 2015. "Parametric and semiparametric reduced-rank regression with flexible sparsity," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 163-174.
  347. Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 2021. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 17(1), pages 29-43, March.
  348. Wenbin Lu & Lexin Li, 2011. "Sufficient Dimension Reduction for Censored Regressions," Biometrics, The International Biometric Society, vol. 67(2), pages 513-523, June.
  349. Shuping Jiang & Lan Xue, 2015. "Globally consistent model selection in semi-parametric additive coefficient models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 532-551, December.
  350. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
  351. Binder Harald & Müller Tina & Schwender Holger & Golka Klaus & Steffens Michael & Hengstler Jan G. & Ickstadt Katja & Schumacher Martin, 2012. "Cluster-Localized Sparse Logistic Regression for SNP Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-31, August.
  352. Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
  353. Chenlei Leng & Minh-Ngoc Tran & David Nott, 2014. "Bayesian adaptive Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 221-244, April.
  354. Kayla Stan & Graham A. Watt & Arturo Sanchez-Azofeifa, 2021. "Financial stability in response to climate change in a northern temperate economy," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  355. Groll Andreas & Schauberger Gunther & Tutz Gerhard, 2015. "Prediction of major international soccer tournaments based on team-specific regularized Poisson regression: An application to the FIFA World Cup 2014," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 11(2), pages 97-115, June.
  356. Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
  357. Guo, Wenxing & Balakrishnan, Narayanaswamy & He, Mu, 2023. "Envelope-based sparse reduced-rank regression for multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
  358. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
  359. Abdullah Gov & Veli Yilanci, 2023. "Graphical Causality Test Approach to the Relationship Between Economic Growth, Energy Consumption, Foreign Trade Balance and Financial Development," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 73(73-1), pages 203-230, June.
  360. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
  361. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
  362. Smeekes, Stephan & Wijler, Etienne, 2021. "An automated approach towards sparse single-equation cointegration modelling," Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
  363. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
  364. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
  365. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
  366. Feng, Zheng-Hui & Lin, Lu & Zhu, Ruo-Qing & Zhu, Li-Xing, 2018. "Nonparametric Variable Selection and Its Application to Additive Models," IRTG 1792 Discussion Papers 2018-002, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  367. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
  368. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
  369. Wu, Tong Tong & He, Xin, 2012. "Coordinate ascent for penalized semiparametric regression on high-dimensional panel count data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 25-33, January.
  370. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
  371. Cheng, Tingting & Liu, Junli & Yao, Wenying & Zhao, Albert Bo, 2022. "The impact of COVID-19 pandemic on the volatility connectedness network of global stock market," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
  372. Ziping Zhao & Daniel P. Palomar, 2018. "Sparse Reduced Rank Regression With Nonconvex Regularization," Papers 1803.07247, arXiv.org.
  373. Feng, Sanying & Xue, Liugen, 2015. "Model detection and estimation for single-index varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 227-244.
  374. Yoshida, Takuma, 2018. "Semiparametric method for model structure discovery in additive regression models," Econometrics and Statistics, Elsevier, vol. 5(C), pages 124-136.
  375. Xianwen Ding & Zhihuang Yang, 2024. "Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates," Mathematics, MDPI, vol. 12(20), pages 1-23, October.
  376. Guanhao Feng & Nicholas Polson, 2020. "Regularizing Bayesian predictive regressions," Journal of Asset Management, Palgrave Macmillan, vol. 21(7), pages 591-608, December.
  377. Xu, Qifa & Zhuo, Xingxuan & Jiang, Cuixia & Liu, Xi & Liu, Yezheng, 2018. "Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth," Economic Modelling, Elsevier, vol. 75(C), pages 221-236.
  378. Kato, Kengo, 2009. "On the degrees of freedom in shrinkage estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1338-1352, August.
  379. Liangliang Zhang & Yushu Shi & Robert R. Jenq & Kim‐Anh Do & Christine B. Peterson, 2021. "Bayesian compositional regression with structured priors for microbiome feature selection," Biometrics, The International Biometric Society, vol. 77(3), pages 824-838, September.
  380. Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "A novel cluster HAR-type model for forecasting realized volatility," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1318-1331.
  381. Baiguo An & Guozhong Feng & Jianhua Guo, 2022. "Interaction Identification and Clique Screening for Classification with Ultra-high Dimensional Discrete Features," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 122-146, March.
  382. Guo, Xiao & Zhang, Hai & Wang, Yao & Wu, Jiang-Lun, 2015. "Model selection and estimation in high dimensional regression models with group SCAD," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 86-92.
  383. Jianyu Liu & Wei Sun & Yufeng Liu, 2019. "Joint skeleton estimation of multiple directed acyclic graphs for heterogeneous population," Biometrics, The International Biometric Society, vol. 75(1), pages 36-47, March.
  384. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
  385. Takeshi Hase & Samik Ghosh & Ryota Yamanaka & Hiroaki Kitano, 2013. "Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
  386. Yunlong Nie & LiangLiang Wang & Jiguo Cao, 2017. "Estimating time‐varying directed gene regulation networks," Biometrics, The International Biometric Society, vol. 73(4), pages 1231-1242, December.
  387. Shawn E. Simpson & David Madigan & Ivan Zorych & Martijn J. Schuemie & Patrick B. Ryan & Marc A. Suchard, 2013. "Multiple Self-Controlled Case Series for Large-Scale Longitudinal Observational Databases," Biometrics, The International Biometric Society, vol. 69(4), pages 893-902, December.
  388. Kohei Yoshikawa & Shuichi Kawano, 2023. "Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization," Computational Statistics, Springer, vol. 38(1), pages 53-75, March.
  389. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  390. Gaynanova, Irina & Wang, Tianying, 2019. "Sparse quadratic classification rules via linear dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 278-299.
  391. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
  392. Francesca Mandel & Riddhi Pratim Ghosh & Ian Barnett, 2023. "Neural networks for clustered and longitudinal data using mixed effects models," Biometrics, The International Biometric Society, vol. 79(2), pages 711-721, June.
  393. Luke Bornn & Gavin Shaddick & James V. Zidek, 2012. "Modeling Nonstationary Processes Through Dimension Expansion," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 281-289, March.
  394. Hyungrok Do & Shinjini Nandi & Preston Putzel & Padhraic Smyth & Judy Zhong, 2023. "A joint fairness model with applications to risk predictions for underrepresented populations," Biometrics, The International Biometric Society, vol. 79(2), pages 826-840, June.
  395. Song Song, 2011. "Dynamic Large Spatial Covariance Matrix Estimation in Application to Semiparametric Model Construction via Variable Clustering: the SCE approach," Papers 1106.3921, arXiv.org, revised Jun 2011.
  396. Mehrabani, Ali, 2023. "Estimation and identification of latent group structures in panel data," Journal of Econometrics, Elsevier, vol. 235(2), pages 1464-1482.
  397. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
  398. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
  399. Feng, Guohua & Gao, Jiti & Peng, Bin, 2022. "An integrated panel data approach to modelling economic growth," Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
  400. Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
  401. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
  402. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
  403. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
  404. Dallakyan, Aramayis & Bessler, David A., 2018. "Gaussian Copulas for Imposing Structure on VAR," 2018 Annual Meeting, August 5-7, Washington, D.C. 274401, Agricultural and Applied Economics Association.
  405. Lian, Heng, 2014. "Semiparametric Bayesian information criterion for model selection in ultra-high dimensional additive models," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 304-310.
  406. Xue Wu & Chixiang Chen & Zheng Li & Lijun Zhang & Vernon M. Chinchilli & Ming Wang, 2024. "A three-stage approach to identify biomarker signatures for cancer genetic data with survival endpoints," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 863-883, July.
  407. McKay Curtis, S. & Banerjee, Sayantan & Ghosal, Subhashis, 2014. "Fast Bayesian model assessment for nonparametric additive regression," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 347-358.
  408. Sun, Fei & Zhang, Qi, 2023. "Robust transfer learning of high-dimensional generalized linear model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
  409. Song, Song & Härdle, Wolfgang Karl & Ritov, Ya'acov, 2010. "High dimensional nonstationary time series modelling with generalized dynamic semiparametric factor model," SFB 649 Discussion Papers 2010-039, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  410. L Schiavon & A Canale & D B Dunson, 2022. "Generalized infinite factorization models [A latent factor linear mixed model for high-dimensional longitudinal data analysis]," Biometrika, Biometrika Trust, vol. 109(3), pages 817-835.
  411. Audrino, Francesco & Tetereva, Anastasija, 2019. "Sentiment spillover effects for US and European companies," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 542-567.
  412. Brandon Koch & David M. Vock & Julian Wolfson, 2018. "Covariate selection with group lasso and doubly robust estimation of causal effects," Biometrics, The International Biometric Society, vol. 74(1), pages 8-17, March.
  413. Jiyong Eom & Frank A. Wolak, 2020. "Breaking Routine for Energy Savings: An Appliance-level Analysis of Small Business Behavior under Dynamic Prices," NBER Working Papers 27263, National Bureau of Economic Research, Inc.
  414. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
  415. Subhroshekhar Ghosh & Soumendu Sundar Mukherjee, 2022. "Learning with latent group sparsity via heat flow dynamics on networks," Papers 2201.08326, arXiv.org.
  416. Wanling Xie & Hu Yang, 2023. "Group sparse recovery via group square-root elastic net and the iterative multivariate thresholding-based algorithm," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 469-507, September.
  417. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
  418. Young Joo Yoon & Cheolwoo Park & Erik Hofmeister & Sangwook Kang, 2012. "Group variable selection in cardiopulmonary cerebral resuscitation data for veterinary patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1605-1621, January.
  419. Lloyd-Jones, Luke R. & Nguyen, Hien D. & McLachlan, Geoffrey J., 2018. "A globally convergent algorithm for lasso-penalized mixture of linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 19-38.
  420. Niko Hauzenberger & Michael Pfarrhofer & Luca Rossini, 2020. "Sparse time-varying parameter VECMs with an application to modeling electricity prices," Papers 2011.04577, arXiv.org, revised Apr 2023.
  421. Wang, Cheng & Chen, Haozhe & Jiang, Binyan, 2024. "HiQR: An efficient algorithm for high-dimensional quadratic regression with penalties," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
  422. Garcia-Magariños Manuel & Antoniadis Anestis & Cao Ricardo & González-Manteiga Wenceslao, 2010. "Lasso Logistic Regression, GSoft and the Cyclic Coordinate Descent Algorithm: Application to Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, August.
  423. Nibbering, Didier & Hastie, Trevor J., 2022. "Multiclass-penalized logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
  424. Lichun Wang & Yuan You & Heng Lian, 2015. "Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models," Statistical Papers, Springer, vol. 56(3), pages 819-828, August.
  425. Marion, Rebecca & Lederer, Johannes & Govaerts, Bernadette & von Sachs, Rainer, 2021. "VC-PCR: A Prediction Method based on Supervised Variable Selection and Clustering," LIDAM Discussion Papers ISBA 2021040, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  426. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
  427. Holter, Julia C. & Stallrich, Jonathan W., 2023. "Tuning parameter selection for penalized estimation via R2," Computational Statistics & Data Analysis, Elsevier, vol. 183(C).
  428. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
  429. Howard D. Bondell & Lexin Li, 2009. "Shrinkage inverse regression estimation for model‐free variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 287-299, January.
  430. Shummin Nakayama & Yasushi Narushima & Hiroshi Yabe, 2021. "Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 79(1), pages 127-154, May.
  431. Wen, Xin & Li, Yang & Zheng, Zemin, 2024. "Scalable efficient reproducible multi-task learning via data splitting," Statistics & Probability Letters, Elsevier, vol. 208(C).
  432. Xing Gao & Sungwon Lee & Gen Li & Sungkyu Jung, 2021. "Covariate‐driven factorization by thresholding for multiblock data," Biometrics, The International Biometric Society, vol. 77(3), pages 1011-1023, September.
  433. Mallick, Himel & Yi, Nengjun, 2017. "Bayesian group bridge for bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 115-133.
  434. Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
  435. Jacob Bien & Irina Gaynanova & Johannes Lederer & Christian L. Müller, 2019. "Prediction error bounds for linear regression with the TREX," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 451-474, June.
  436. Shuang Huang & Chengcheng Hu & Melanie L. Bell & Dean Billheimer & Stefano Guerra & Denise Roe & Monica M. Vasquez & Edward J. Bedrick, 2018. "Regularized continuous‐time Markov Model via elastic net," Biometrics, The International Biometric Society, vol. 74(3), pages 1045-1054, September.
  437. Rafael E. Carrillo & Martin Leblanc & Baptiste Schubnel & Renaud Langou & Cyril Topfel & Pierre-Jean Alet, 2020. "High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution," Energies, MDPI, vol. 13(21), pages 1-17, November.
  438. Sophie Lambert-Lacroix & Laurent Zwald, 2016. "The adaptive BerHu penalty in robust regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(3), pages 487-514, September.
  439. Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
  440. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
  441. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
  442. Xiaolong Qin & Nguyen Thai An, 2019. "Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets," Computational Optimization and Applications, Springer, vol. 74(3), pages 821-850, December.
  443. Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
  444. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
  445. Fabian Schäfer & Manuel Walther & Dominik G. Grimm & Alexander Hübner, 2023. "Combining machine learning and optimization for the operational patient-bed assignment problem," Health Care Management Science, Springer, vol. 26(4), pages 785-806, December.
  446. Wang, Hansheng & Leng, Chenlei, 2008. "A note on adaptive group lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5277-5286, August.
  447. Yu-Min Yen, 2010. "A Note on Sparse Minimum Variance Portfolios and Coordinate-Wise Descent Algorithms," Papers 1005.5082, arXiv.org, revised Sep 2013.
  448. Chakraborty, Sounak & Lozano, Aurelie C., 2019. "A graph Laplacian prior for Bayesian variable selection and grouping," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 72-91.
  449. Ding, Yi & Kambouroudis, Dimos & McMillan, David G., 2021. "Forecasting realised volatility: Does the LASSO approach outperform HAR?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
  450. Aguilera Morillo, María del Carmen, 2019. "Quantile regression : a penalization approach," DES - Working Papers. Statistics and Econometrics. WS 28428, Universidad Carlos III de Madrid. Departamento de Estadística.
  451. Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
  452. M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
  453. Abhishek Bhola & Shailendra Singh, 2019. "Visualisation and Modelling of High-Dimensional Cancerous Gene Expression Dataset," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 1-22, March.
  454. Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
  455. Yang, Yuehan & Xia, Siwei & Yang, Hu, 2023. "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
  456. Ruoyu Wang & Qihua Wang & Wang Miao, 2023. "A robust fusion-extraction procedure with summary statistics in the presence of biased sources," Biometrika, Biometrika Trust, vol. 110(4), pages 1023-1040.
  457. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
  458. Andreas Groll & Trevor Hastie & Gerhard Tutz, 2017. "Selection of effects in Cox frailty models by regularization methods," Biometrics, The International Biometric Society, vol. 73(3), pages 846-856, September.
  459. Ma, Chenchen & Tu, Yundong, 2023. "Shrinkage estimation of multiple threshold factor models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1876-1892.
  460. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
  461. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
  462. David C. Wheeler & Salem Rustom & Matthew Carli & Todd P. Whitehead & Mary H. Ward & Catherine Metayer, 2021. "Assessment of Grouped Weighted Quantile Sum Regression for Modeling Chemical Mixtures and Cancer Risk," IJERPH, MDPI, vol. 18(2), pages 1-20, January.
  463. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
  464. Ryosuke Shimmura & Joe Suzuki, 2024. "Newton-Type Methods with the Proximal Gradient Step for Sparse Estimation," SN Operations Research Forum, Springer, vol. 5(2), pages 1-27, June.
  465. Xiaoping Liu & Xiao-Bai Li & Sumit Sarkar, 2023. "Cost-Restricted Feature Selection for Data Acquisition," Management Science, INFORMS, vol. 69(7), pages 3976-3992, July.
  466. Zhang, Hong-Fan, 2021. "Minimum Average Variance Estimation with group Lasso for the multivariate response Central Mean Subspace," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
  467. Pan, Qing & Zhao, Yunpeng, 2016. "Integrative weighted group lasso and generalized local quadratic approximation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 66-78.
  468. Xiao Wang & Shuxiong Wang & Hongchao Zhang, 2017. "Inexact proximal stochastic gradient method for convex composite optimization," Computational Optimization and Applications, Springer, vol. 68(3), pages 579-618, December.
  469. Abbas Khalili & Farhad Shokoohi & Masoud Asgharian & Shili Lin, 2023. "Sparse estimation in semiparametric finite mixture of varying coefficient regression models," Biometrics, The International Biometric Society, vol. 79(4), pages 3445-3457, December.
  470. Muhammad Jaffri Mohd Nasir & Ramzan Nazim Khan & Gopalan Nair & Darfiana Nur, 2024. "Active-set based block coordinate descent algorithm in group LASSO for self-exciting threshold autoregressive model," Statistical Papers, Springer, vol. 65(5), pages 2973-3006, July.
  471. Huang Hailin & Shangguan Jizi & Ruan Peifeng & Liang Hua, 2019. "Bi-level feature selection in high dimensional AFT models with applications to a genomic study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-11, October.
  472. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
  473. Lee, Sangin & Lee, Youngjo & Pawitan, Yudi, 2018. "Sparse pathway-based prediction models for high-throughput molecular data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 125-135.
  474. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
  475. Xiaoquan Wen, 2014. "Bayesian model selection in complex linear systems, as illustrated in genetic association studies," Biometrics, The International Biometric Society, vol. 70(1), pages 73-83, March.
  476. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
  477. Murat Genç, 2022. "A new double-regularized regression using Liu and lasso regularization," Computational Statistics, Springer, vol. 37(1), pages 159-227, March.
  478. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
  479. Jie Ding & Vahid Tarokh & Yuhong Yang, 2018. "Model Selection Techniques -- An Overview," Papers 1810.09583, arXiv.org.
  480. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
  481. Xin He & Junhui Wang, 2020. "Discovering model structure for partially linear models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 45-63, February.
  482. Shen, Lijuan & Tang, Yanlin & Tang, Loon Ching, 2021. "Understanding key factors affecting power systems resilience," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  483. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
  484. Yiyuan She & Jiahui Shen & Chao Zhang, 2022. "Supervised multivariate learning with simultaneous feature auto‐grouping and dimension reduction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 912-932, July.
  485. Ren, Yunwen & Xiao, Zhiguo & Zhang, Xinsheng, 2013. "Two-step adaptive model selection for vector autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 349-364.
  486. Wentao Wang & Jiaxuan Liang & Rong Liu & Yunquan Song & Min Zhang, 2022. "A Robust Variable Selection Method for Sparse Online Regression via the Elastic Net Penalty," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
  487. Heng Lian & Peng Lai & Hua Liang, 2013. "Partially Linear Structure Selection in Cox Models with Varying Coefficients," Biometrics, The International Biometric Society, vol. 69(2), pages 348-357, June.
  488. Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.
  489. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
  490. Han, Xiaoyi & Peng, Bin & Yang, Yanrong & Zhu, Huanjun, 2021. "Shrinkage estimation of the varying-coefficient model with continuous and categorical covariates," Economics Letters, Elsevier, vol. 202(C).
  491. Arfan Raheen Afzal & Jing Yang & Xuewen Lu, 2021. "Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters," Computational Statistics, Springer, vol. 36(2), pages 829-855, June.
  492. A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
  493. Yuanyuan Shen & Katherine P. Liao & Tianxi Cai, 2015. "Sparse kernel machine regression for ordinal outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 63-70, March.
  494. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
  495. David Cheng & Ashwin N. Ananthakrishnan & Tianxi Cai, 2021. "Robust and efficient semi‐supervised estimation of average treatment effects with application to electronic health records data," Biometrics, The International Biometric Society, vol. 77(2), pages 413-423, June.
  496. Gelper, Sarah & Wilms, Ines & Croux, Christophe, 2016. "Identifying Demand Effects in a Large Network of Product Categories," Journal of Retailing, Elsevier, vol. 92(1), pages 25-39.
  497. David Magis & Francis Tuerlinckx & Paul De Boeck, 2015. "Detection of Differential Item Functioning Using the Lasso Approach," Journal of Educational and Behavioral Statistics, , vol. 40(2), pages 111-135, April.
  498. Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
  499. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
  500. Ching-pei Lee & Stephen J. Wright, 2020. "Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 151-187, April.
  501. Wenying Wu & Dingtao Peng, 2021. "Optimality Conditions for Group Sparse Constrained Optimization Problems," Mathematics, MDPI, vol. 9(1), pages 1-17, January.
  502. Liye Wang & Chong-Yaw Wee & Heung-Il Suk & Xiaoying Tang & Dinggang Shen, 2015. "MRI-Based Intelligence Quotient (IQ) Estimation with Sparse Learning," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
  503. Jacob Bien & Florentina Bunea & Luo Xiao, 2016. "Convex Banding of the Covariance Matrix," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 834-845, April.
  504. Sunkyung Kim & Wei Pan & Xiaotong Shen, 2013. "Network-Based Penalized Regression With Application to Genomic Data," Biometrics, The International Biometric Society, vol. 69(3), pages 582-593, September.
  505. Lai, Peng & Meng, Jie & Lian, Heng, 2015. "Polynomial spline approach for variable selection and estimation in varying coefficient models for time series data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 21-27.
  506. Wang, Ning & Guo, Ziyu & Shang, Dawei & Li, Keyuyang, 2024. "Carbon trading price forecasting in digitalization social change era using an explainable machine learning approach: The case of China as emerging country evidence," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
  507. Guo, Yi & Berman, Mark & Gao, Junbin, 2014. "Group subset selection for linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 39-52.
  508. Silver Matt & Montana Giovanni & Alzheimer's Disease Neuroimaging Initiative, 2012. "Fast Identification of Biological Pathways Associated with a Quantitative Trait Using Group Lasso with Overlaps," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-43, January.
  509. Oskar Allerbo & Rebecka Jörnsten, 2022. "Flexible, non-parametric modeling using regularized neural networks," Computational Statistics, Springer, vol. 37(4), pages 2029-2047, September.
  510. Benjamin Poignard, 2020. "Asymptotic theory of the adaptive Sparse Group Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 297-328, February.
  511. David A Knowles & Gina Bouchard & Sylvia Plevritis, 2019. "Sparse discriminative latent characteristics for predicting cancer drug sensitivity from genomic features," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-18, May.
  512. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".
  513. Baragatti, M. & Pommeret, D., 2012. "A study of variable selection using g-prior distribution with ridge parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1920-1934.
  514. Haibin Zhang & Juan Wei & Meixia Li & Jie Zhou & Miantao Chao, 2014. "On proximal gradient method for the convex problems regularized with the group reproducing kernel norm," Journal of Global Optimization, Springer, vol. 58(1), pages 169-188, January.
  515. Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
  516. Mikulić, Josip & Prebežac, Darko, 2012. "Using dummy regression to explore asymmetric effects in tourist satisfaction: A cautionary note," Tourism Management, Elsevier, vol. 33(3), pages 713-716.
  517. Zhang, Xin & Zhao, Junlong, 2024. "Group variable selection via group sparse neural network," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
  518. Sanying Feng & Liugen Xue, 2013. "Variable selection for partially varying coefficient single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2637-2652, December.
  519. J. Choi & S. Ye & K. H. Eng & K. Korthauer & W. H. Bradley & J. S. Rader & C. Kendziorski, 2017. "IPI59: An Actionable Biomarker to Improve Treatment Response in Serous Ovarian Carcinoma Patients," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 1-12, June.
  520. Howard D. Bondell & Brian J. Reich, 2009. "Simultaneous Factor Selection and Collapsing Levels in ANOVA," Biometrics, The International Biometric Society, vol. 65(1), pages 169-177, March.
  521. Sanying Feng & Menghan Zhang & Tiejun Tong, 2022. "Variable selection for functional linear models with strong heredity constraint," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 321-339, April.
  522. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
  523. Ma, Chenchen & Tu, Yundong, 2023. "Group fused Lasso for large factor models with multiple structural breaks," Journal of Econometrics, Elsevier, vol. 233(1), pages 132-154.
  524. Tung Duy Luu & Jalal Fadili & Christophe Chesneau, 2020. "Sharp oracle inequalities for low-complexity priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 353-397, April.
  525. Jeon, Jong-June & Kwon, Sunghoon & Choi, Hosik, 2017. "Homogeneity detection for the high-dimensional generalized linear model," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 61-74.
  526. Chan, Ngai Hang & Yau, Chun Yip & Zhang, Rong-Mao, 2015. "LASSO estimation of threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 189(2), pages 285-296.
  527. She, Yiyuan, 2012. "An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2976-2990.
  528. Shinya Sugawara, 2022. "What composes desirable formal at-home elder care? An analysis for multiple service combinations," The Japanese Economic Review, Springer, vol. 73(2), pages 373-402, April.
  529. Alfons, Andreas & Croux, Christophe & Gelper, Sarah, 2016. "Robust groupwise least angle regression," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 421-435.
  530. Jiti Gao & Bin Peng & Zhao Ren & Xiaohui Zhang, 2015. "Variable Selection for a Categorical Varying-Coefficient Model with Identifications for Determinants of Body Mass Index," Monash Econometrics and Business Statistics Working Papers 21/15, Monash University, Department of Econometrics and Business Statistics.
  531. Jing-Zhi Huang & Zhan Shi, 2023. "Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance," Management Science, INFORMS, vol. 69(3), pages 1780-1804, March.
  532. Reher, Leonie & Runst, Petrik & Thomä, Jörg & Bizer, Kilian, 2024. "Measuring non-R&D drivers of innovation: The case of SMEs in lagging regions," ifh Working Papers 45/2024, Volkswirtschaftliches Institut für Mittelstand und Handwerk an der Universität Göttingen (ifh).
  533. Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
  534. Denis Agniel & Katherine P. Liao & Tianxi Cai, 2016. "Estimation and testing for multiple regulation of multivariate mixed outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1194-1205, December.
  535. Xiaohang Ren & Kang Yuan & Lizhu Tao & Cheng Yan, 2024. "Carbon Prices Forecasting Using Group Information," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 4(4), pages 1-6.
  536. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.
  537. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
  538. Minami, Kentaro, 2020. "Degrees of freedom in submodular regularization: A computational perspective of Stein’s unbiased risk estimate," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
  539. Daniela De Canditiis & Italia De Feis, 2021. "Anomaly Detection in Multichannel Data Using Sparse Representation in RADWT Frames," Mathematics, MDPI, vol. 9(11), pages 1-26, June.
  540. Fan Xia & Jun Chen & Wing Kam Fung & Hongzhe Li, 2013. "A Logistic Normal Multinomial Regression Model for Microbiome Compositional Data Analysis," Biometrics, The International Biometric Society, vol. 69(4), pages 1053-1063, December.
  541. Zhi Han & Jianjun Wang & Jia Jing & Hai Zhang, 2014. "A Simple Gaussian Measurement Bound for Exact Recovery of Block-Sparse Signals," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-8, November.
  542. Ya Chen & Mike Tsionas & Valentin Zelenyuk, 2020. "LASSO DEA for small and big data," CEPA Working Papers Series WP092020, School of Economics, University of Queensland, Australia.
  543. Igor Konnov, 2017. "An Adaptive Partial Linearization Method for Optimization Problems on Product Sets," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 478-501, November.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.