IDEAS home Printed from https://ideas.repec.org/p/zbw/irtgdp/2018057.html
   My bibliography  Save this paper

Trending Mixture Copula Models with Copula Selection

Author

Listed:
  • Yang, Bingduo
  • Cai, Zongwu
  • Hafner, Christian M.
  • Liu, Guannan

Abstract

Modeling the joint tails of multiple nancial time series has important implications for risk management. Classical models for dependence often encounter a lack of t in the joint tails, calling for additional exibility. In this paper we introduce a new nonparametric time-varying mixture copula model, in which both weights and dependence parameters are deterministic functions of time. We propose penalized trending mixture copula models with group smoothly clipped absolute deviation (SCAD) penalty functions to do the estimation and copula selection simultaneously. Monte Carlo simulation results suggest that the shrinkage estimation procedure performs well in selecting and estimating both constant and trending mixture copula models. Using the proposed model and method, we analyze the evolution of the dependence among four international stock markets, and nd substantial changes in the levels and patterns of the dependence, in particular around crisis periods.

Suggested Citation

  • Yang, Bingduo & Cai, Zongwu & Hafner, Christian M. & Liu, Guannan, 2018. "Trending Mixture Copula Models with Copula Selection," IRTG 1792 Discussion Papers 2018-057, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
  • Handle: RePEc:zbw:irtgdp:2018057
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/230768/1/irtg1792dp2018-057.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2015. "Is volatility clustering of asset returns asymmetric?," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 62-76.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Zongwu Cai & Xian Wang, 2014. "Selection of Mixed Copula Model via Penalized Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 788-801, June.
    4. Liu, Guannan & Long, Wei & Zhang, Xinyu & Li, Qi, 2019. "Detecting Financial Data Dependence Structure By Averaging Mixture Copulas," Econometric Theory, Cambridge University Press, vol. 35(4), pages 777-815, August.
    5. Hafner, Christian M. & Reznikova, Olga, 2010. "Efficient estimation of a semiparametric dynamic copula model," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2609-2627, November.
    6. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
    7. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    8. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    9. Almeida, Carlos & Czado, Claudia, 2012. "Efficient Bayesian inference for stochastic time-varying copula models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1511-1527.
    10. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    11. Elif F. Acar & Radu V. Craiu & Fang Yao, 2011. "Dependence Calibration in Conditional Copulas: A Nonparametric Approach," Biometrics, The International Biometric Society, vol. 67(2), pages 445-453, June.
    12. Fermanian, Jean-David & Lopez, Olivier, 2018. "Single-index copulas," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 27-55.
    13. Cai, Zongwu & Juhl, Ted & Yang, Bingduo, 2015. "Functional index coefficient models with variable selection," Journal of Econometrics, Elsevier, vol. 189(2), pages 272-284.
    14. Christian M. Hafner & Hans Manner, 2012. "Dynamic stochastic copula models: estimation, inference and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(2), pages 269-295, March.
    15. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    16. Bing-Yue Liu & Qiang Ji & Ying Fan, 2017. "A new time-varying optimal copula model identifying the dependence across markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 437-453, March.
    17. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    18. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    19. Mensi, Walid & Hammoudeh, Shawkat & Shahzad, Syed Jawad Hussain & Shahbaz, Muhammad, 2017. "Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 258-279.
    20. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    21. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    22. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    23. Hans Manner & Olga Reznikova, 2012. "A Survey on Time-Varying Copulas: Specification, Simulations, and Application," Econometric Reviews, Taylor & Francis Journals, vol. 31(6), pages 654-687, November.
    24. Dobric, Jadran & Schmid, Friedrich, 2007. "A goodness of fit test for copulas based on Rosenblatt's transformation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4633-4642, May.
    25. Abegaz, Fentaw & Gijbels, Irène & Veraverbeke, Noël, 2012. "Semiparametric estimation of conditional copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 43-73.
    26. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    27. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    28. Juan Lin & Ximing Wu, 2015. "Smooth Tests of Copula Specifications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 128-143, January.
    29. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    30. Jean-David FERMANIAN & Olivier SCAILLET, 2004. "Some Statistical Pitfalls In Copula Modeling For Financial Applications," FAME Research Paper Series rp108, International Center for Financial Asset Management and Engineering.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:kan:wpaper:202105 is not listed on IDEAS
    2. Bingduo Yang & Christian M. Hafner & Guannan Liu & Wei Long, 2021. "Semiparametric estimation and variable selection for single‐index copula models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 962-988, November.
    3. Zongwu Cai & Guannan Liu & Wei Long & Xuelong Luo, 2024. "Semiparametric Conditional Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202401, University of Kansas, Department of Economics, revised Jan 2024.
    4. Guannan Liu & Wei Long & Bingduo Yang & Zongwu Cai, 2022. "Semiparametric estimation and model selection for conditional mixture copula models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 287-330, March.
    5. Anubha Goel & Aparna Mehra, 2019. "Analyzing Contagion Effect in Markets During Financial Crisis Using Stochastic Autoregressive Canonical Vine Model," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 921-950, March.
    6. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    7. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    8. Aepli, Matthias D. & Frauendorfer, Karl & Fuess, Roland & Paraschiv, Florentina, 2015. "Multivariate Dynamic Copula Models: Parameter Estimation and Forecast Evaluation," Working Papers on Finance 1513, University of St. Gallen, School of Finance.
    9. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    10. Tobias Eckernkemper, 2018. "Modeling Systemic Risk: Time-Varying Tail Dependence When Forecasting Marginal Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 63-117.
    11. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    12. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    13. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    14. Su, EnDer, 2014. "Measuring Contagion Risk in High Volatility State between Major Banks in Taiwan by Threshold Copula GARCH Model," MPRA Paper 58161, University Library of Munich, Germany.
    15. Tófoli Paula V. & Ziegelmann Flávio A. & Candido Osvaldo & Valls Pereira Pedro L., 2019. "Dynamic D-Vine Copula Model with Applications to Value-at-Risk (VaR)," Journal of Time Series Econometrics, De Gruyter, vol. 11(2), pages 1-34, July.
    16. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    17. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    18. Anandadeep Mandal & Sunil S. Poshakwale & Gabriel J. Power, 2021. "Do investors gain from forecasting the asymmetric return co‐movements of financial and real assets?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 3246-3268, July.
    19. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    20. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).
    21. Bei, Zeyun & Lin, Juan & Zhou, Yinggang, 2024. "No safe haven, only diversification and contagion — Intraday evidence around the COVID-19 pandemic," Journal of International Money and Finance, Elsevier, vol. 143(C).

    More about this item

    Keywords

    Copula; Time-Varying Copula; Mixture Copula; Copula Selection;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2018057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.