IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v68y2016i1p155-180.html
   My bibliography  Save this article

The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data

Author

Listed:
  • Yawei He
  • Zehua Chen

Abstract

High-dimensional data arises in many important scientific fields. The analysis of high-dimensional data poses great challenges to statisticians. In high-dimensional data, the relationship among the variables is complex. It involves main effects as well as interaction effects of the covariates. The effect of some covariates is only realized through their interaction with the others. This makes the consideration of interactive models imperative in the analysis of high-dimensional data. Because of the existence of high spurious correlation among the covariates in high-dimensional data, conventional tools for dealing with interactive models become inappropriate. In this paper, we develop specific tools for feature selection in high-dimensional data with interactive models, including a version of the extended BIC (EBIC) for interactive models and a sequential feature selection procedure. Main-effect and interaction features are treated differently in the EBIC for interactive models and the sequential procedure due to their different natures. The selection consistency of the EBIC for interactive models and the sequential procedure is established. Simulation studies are carried out to vindicate the asymptotic property in finite samples as well as to compare with non-sequential procedures. The approach developed in this paper is also applied to a real data set. Copyright The Institute of Statistical Mathematics, Tokyo 2016

Suggested Citation

  • Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
  • Handle: RePEc:spr:aistmt:v:68:y:2016:i:1:p:155-180
    DOI: 10.1007/s10463-014-0497-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-014-0497-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-014-0497-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    3. Radchenko, Peter & James, Gareth M., 2010. "Variable Selection Using Adaptive Nonlinear Interaction Structures in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1541-1553.
    4. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. David Siegmund, 2004. "Model selection in irregular problems: Applications to mapping quantitative trait loci," Biometrika, Biometrika Trust, vol. 91(4), pages 785-800, December.
    7. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    8. Choi, Nam Hee & Li, William & Zhu, Ji, 2010. "Variable Selection With the Strong Heredity Constraint and Its Oracle Property," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 354-364.
    9. Karl W. Broman & Terence P. Speed, 2002. "A model selection approach for the identification of quantitative trait loci in experimental crosses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 641-656, October.
    10. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuyang Liu & Pengfei Pi & Shan Luo, 2023. "A semi-parametric approach to feature selection in high-dimensional linear regression models," Computational Statistics, Springer, vol. 38(2), pages 979-1000, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    2. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    3. Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    4. Wang, Tao & Zhu, Lixing, 2011. "Consistent tuning parameter selection in high dimensional sparse linear regression," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1141-1151, August.
    5. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    6. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    7. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    8. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    9. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
    10. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    11. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    12. Bhatnagar, Sahir R. & Lu, Tianyuan & Lovato, Amanda & Olds, David L. & Kobor, Michael S. & Meaney, Michael J. & O'Donnell, Kieran & Yang, Archer Y. & Greenwood, Celia M.T., 2023. "A sparse additive model for high-dimensional interactions with an exposure variable," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    13. Heng Lian, 2012. "Variable selection in high-dimensional partly linear additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 825-839, December.
    14. Ryan A. Peterson & Joseph E. Cavanaugh, 2022. "Ranked sparsity: a cogent regularization framework for selecting and estimating feature interactions and polynomials," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 427-454, September.
    15. Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
    16. Pan, Qing & Zhao, Yunpeng, 2016. "Integrative weighted group lasso and generalized local quadratic approximation," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 66-78.
    17. Sanying Feng & Liugen Xue, 2013. "Variable selection for partially varying coefficient single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2637-2652, December.
    18. Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
    19. Gabriel E Hoffman & Benjamin A Logsdon & Jason G Mezey, 2013. "PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    20. Zhao, Peixin & Xue, Liugen, 2010. "Variable selection for semiparametric varying coefficient partially linear errors-in-variables models," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1872-1883, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:68:y:2016:i:1:p:155-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.