IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/31543.html
   My bibliography  Save this paper

Estimation of large precision matrices through block penalization

Author

Listed:
  • Lam, Clifford

Abstract

This paper focuses on exploring the sparsity of the inverse covariance matrix $\bSigma^{-1}$, or the precision matrix. We form blocks of parameters based on each off-diagonal band of the Cholesky factor from its modified Cholesky decomposition, and penalize each block of parameters using the $L_2$-norm instead of individual elements. We develop a one-step estimator, and prove an oracle property which consists of a notion of block sign-consistency and asymptotic normality. In particular, provided the initial estimator of the Cholesky factor is good enough and the true Cholesky has finite number of non-zero off-diagonal bands, oracle property holds for the one-step estimator even if $p_n \gg n$, and can even be as large as $\log p_n = o(n)$, where the data $\y$ has mean zero and tail probability $P(|y_j| > x) \leq K\exp(-Cx^d)$, $d > 0$, and $p_n$ is the number of variables. We also prove an operator norm convergence result, showing the cost of dimensionality is just $\log p_n$. The advantage of this method over banding by Bickel and Levina (2008) or nested LASSO by Levina \emph{et al.} (2007) is that it allows for elimination of weaker signals that precede stronger ones in the Cholesky factor. A method for obtaining an initial estimator for the Cholesky factor is discussed, and a gradient projection algorithm is developed for calculating the one-step estimate. Simulation results are in favor of the newly proposed method and a set of real data is analyzed using the new procedure and the banding method.

Suggested Citation

  • Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:31543
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/31543/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    3. Smith M. & Kohn R., 2002. "Parsimonious Covariance Matrix Estimation for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1141-1153, December.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Jianhua Z. Huang & Naiping Liu & Mohsen Pourahmadi & Linxu Liu, 2006. "Covariance matrix selection and estimation via penalised normal likelihood," Biometrika, Biometrika Trust, vol. 93(1), pages 85-98, March.
    6. Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
    7. Furrer, Reinhard & Bengtsson, Thomas, 2007. "Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 227-255, February.
    8. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    2. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    3. Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
    4. Lichun Wang & Yuan You & Heng Lian, 2015. "Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models," Statistical Papers, Springer, vol. 56(3), pages 819-828, August.
    5. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    6. Wei Lan & Ronghua Luo & Chih-Ling Tsai & Hansheng Wang & Yunhong Yang, 2015. "Testing the Diagonality of a Large Covariance Matrix in a Regression Setting," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 76-86, January.
    7. Xiaoping Zhou & Dmitry Malioutov & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Smooth monotone covariance for elliptical distributions and applications in finance," Quantitative Finance, Taylor & Francis Journals, vol. 14(9), pages 1555-1571, September.
    8. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    9. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    10. Eduardo F. Mendes & Gabriel J. P. Pinto, 2023. "Generalized Information Criteria for Structured Sparse Models," Papers 2309.01764, arXiv.org.
    11. Benjamin Poignard & Manabu Asai, 2023. "Estimation of high-dimensional vector autoregression via sparse precision matrix," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
    12. Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.
    13. Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
    14. John Stephen Yap & Jianqing Fan & Rongling Wu, 2009. "Nonparametric Modeling of Longitudinal Covariance Structure in Functional Mapping of Quantitative Trait Loci," Biometrics, The International Biometric Society, vol. 65(4), pages 1068-1077, December.
    15. Daye, Z. John & Jeng, X. Jessie, 2009. "Shrinkage and model selection with correlated variables via weighted fusion," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1284-1298, February.
    16. Peter Bickel & Bo Li & Alexandre Tsybakov & Sara Geer & Bin Yu & Teófilo Valdés & Carlos Rivero & Jianqing Fan & Aad Vaart, 2006. "Regularization in statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 271-344, September.
    17. Guan Yu & Yufeng Liu, 2016. "Sparse Regression Incorporating Graphical Structure Among Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 707-720, April.
    18. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    19. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    20. Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.

    More about this item

    Keywords

    Covariance matrix; high dimensionality; modified Cholesky decomposition; block penalty; block sign-consistency; oracle property.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:31543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.