IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i4p1332-1342.html
   My bibliography  Save this article

Stagewise generalized estimating equations with grouped variables

Author

Listed:
  • Gregory Vaughan
  • Robert Aseltine
  • Kun Chen
  • Jun Yan

Abstract

Forward stagewise estimation is a revived slow‐brewing approach for model building that is particularly attractive in dealing with complex data structures for both its computational efficiency and its intrinsic connections with penalized estimation. Under the framework of generalized estimating equations, we study general stagewise estimation approaches that can handle clustered data and non‐Gaussian/non‐linear models in the presence of prior variable grouping structure. As the grouping structure is often not ideal in that even the important groups may contain irrelevant variables, the key is to simultaneously conduct group selection and within‐group variable selection, that is, bi‐level selection. We propose two approaches to address the challenge. The first is a bi‐level stagewise estimating equations (BiSEE) approach, which is shown to correspond to the sparse group lasso penalized regression. The second is a hierarchical stagewise estimating equations (HiSEE) approach to handle more general hierarchical grouping structure, in which each stagewise estimation step itself is executed as a hierarchical selection process based on the grouping structure. Simulation studies show that BiSEE and HiSEE yield competitive model selection and predictive performance compared to existing approaches. We apply the proposed approaches to study the association between the suicide‐related hospitalization rates of the 15–19 age group and the characteristics of the school districts in the State of Connecticut.

Suggested Citation

  • Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1332-1342
    DOI: 10.1111/biom.12669
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12669
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wolfson, Julian, 2011. "EEBoost: A General Method for Prediction and Variable Selection Based on Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 296-305.
    2. Lan Wang & Jianhui Zhou & Annie Qu, 2012. "Penalized Generalized Estimating Equations for High-Dimensional Longitudinal Data Analysis," Biometrics, The International Biometric Society, vol. 68(2), pages 353-360, June.
    3. Jin Liu & Shuangge Ma & Jian Huang, 2014. "Integrative Analysis of Cancer Diagnosis Studies with Composite Penalization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 87-103, March.
    4. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    5. Jian Huang & Shuange Ma & Huiliang Xie & Cun-Hui Zhang, 2009. "A group bridge approach for variable selection," Biometrika, Biometrika Trust, vol. 96(2), pages 339-355.
    6. Ryan J. Tibshirani & Jonathan Taylor & Richard Lockhart & Robert Tibshirani, 2016. "Exact Post-Selection Inference for Sequential Regression Procedures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 600-620, April.
    7. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    8. Wenjiang J. Fu, 2003. "Penalized Estimating Equations," Biometrics, The International Biometric Society, vol. 59(1), pages 126-132, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zimu Chen & Zhanfeng Wang & Yuan‐chin Ivan Chang, 2020. "Sequential adaptive variables and subject selection for GEE methods," Biometrics, The International Biometric Society, vol. 76(2), pages 496-507, June.
    2. Vaughan, Gregory, 2020. "Efficient big data model selection with applications to fraud detection," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1116-1127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    2. Qiu, Debin & Ahn, Jeongyoun, 2020. "Grouped variable screening for ultra-high dimensional data for linear model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Geronimi, J. & Saporta, G., 2017. "Variable selection for multiply-imputed data with penalized generalized estimating equations," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 103-114.
    4. Jin Liu & Jian Huang & Yawei Zhang & Qing Lan & Nathaniel Rothman & Tongzhang Zheng & Shuangge Ma, 2014. "Integrative analysis of prognosis data on multiple cancer subtypes," Biometrics, The International Biometric Society, vol. 70(3), pages 480-488, September.
    5. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    6. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
    7. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    8. Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    9. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    10. Li, Gaorong & Lian, Heng & Feng, Sanying & Zhu, Lixing, 2013. "Automatic variable selection for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 61(C), pages 174-186.
    11. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    12. Lee, Sangin & Lee, Youngjo & Pawitan, Yudi, 2018. "Sparse pathway-based prediction models for high-throughput molecular data," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 125-135.
    13. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    14. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    15. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    16. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    17. Rahul Ghosal & Arnab Maity & Timothy Clark & Stefano B. Longo, 2020. "Variable selection in functional linear concurrent regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 565-587, June.
    18. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    19. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Young Joo Yoon & Cheolwoo Park & Erik Hofmeister & Sangwook Kang, 2012. "Group variable selection in cardiopulmonary cerebral resuscitation data for veterinary patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1605-1621, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1332-1342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.