IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i1d10.1007_s10898-021-01054-7.html
   My bibliography  Save this article

An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems

Author

Listed:
  • Minh Pham

    (San Francisco State University)

  • Xiaodong Lin

    (Rutgers University)

  • Andrzej Ruszczyński

    (Rutgers University)

  • Yu Du

    (University of Colorado Denver)

Abstract

We propose a new outer–inner linearization method for non-convex statistical learning problems involving non-convex structural penalties and non-convex loss. Many important statistical problems fall in this category, including the robust M-estimators, generalized linear models, and different types of structured learning problems. Our method exploits the fact that many such loss and penalty functions can be represented as compositions of smooth concave functions and nonsmooth convex functions. It linearizes the outer concave functions and solves the resulting convex, but still nonsmooth, subproblems by a special alternating linearization method. We provide proof of convergence to a stationary point of the method under mild conditions. Finally, numerical examples involving non-convex structural penalties and non-convex loss functions demonstrate the efficacy and accuracy of the method.

Suggested Citation

  • Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:1:d:10.1007_s10898-021-01054-7
    DOI: 10.1007/s10898-021-01054-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01054-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01054-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    2. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    3. Mazumder, Rahul & Friedman, Jerome H. & Hastie, Trevor, 2011. "SparseNet: Coordinate Descent With Nonconvex Penalties," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1125-1138.
    4. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    5. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    8. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    3. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
    4. Chen, Shunjie & Yang, Sijia & Wang, Pei & Xue, Liugen, 2023. "Two-stage penalized algorithms via integrating prior information improve gene selection from omics data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    5. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    6. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    7. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    9. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    10. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
    11. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    12. Xiaoping Liu & Xiao-Bai Li & Sumit Sarkar, 2023. "Cost-Restricted Feature Selection for Data Acquisition," Management Science, INFORMS, vol. 69(7), pages 3976-3992, July.
    13. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    14. Ismail Shah & Hina Naz & Sajid Ali & Amani Almohaimeed & Showkat Ahmad Lone, 2023. "A New Quantile-Based Approach for LASSO Estimation," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    15. Sunkyung Kim & Wei Pan & Xiaotong Shen, 2013. "Network-Based Penalized Regression With Application to Genomic Data," Biometrics, The International Biometric Society, vol. 69(3), pages 582-593, September.
    16. Howard D. Bondell & Brian J. Reich, 2009. "Simultaneous Factor Selection and Collapsing Levels in ANOVA," Biometrics, The International Biometric Society, vol. 65(1), pages 169-177, March.
    17. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    18. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    19. Yang, Hu & Yi, Danhui, 2015. "Studies of the adaptive network-constrained linear regression and its application," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 40-52.
    20. Baiguo An & Beibei Zhang, 2020. "Logistic regression with image covariates via the combination of L1 and Sobolev regularizations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:1:d:10.1007_s10898-021-01054-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.