IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1005272.html
   My bibliography  Save this article

Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping

Author

Listed:
  • Chris Wallace
  • Antony J Cutler
  • Nikolas Pontikos
  • Marcin L Pekalski
  • Oliver S Burren
  • Jason D Cooper
  • Arcadio Rubio García
  • Ricardo C Ferreira
  • Hui Guo
  • Neil M Walker
  • Deborah J Smyth
  • Stephen S Rich
  • Suna Onengut-Gumuscu
  • Stephen J Sawcer
  • Maria Ban
  • Sylvia Richardson
  • John A Todd
  • Linda S Wicker

Abstract

Identification of candidate causal variants in regions associated with risk of common diseases is complicated by linkage disequilibrium (LD) and multiple association signals. Nonetheless, accurate maps of these variants are needed, both to fully exploit detailed cell specific chromatin annotation data to highlight disease causal mechanisms and cells, and for design of the functional studies that will ultimately be required to confirm causal mechanisms. We adapted a Bayesian evolutionary stochastic search algorithm to the fine mapping problem, and demonstrated its improved performance over conventional stepwise and regularised regression through simulation studies. We then applied it to fine map the established multiple sclerosis (MS) and type 1 diabetes (T1D) associations in the IL-2RA (CD25) gene region. For T1D, both stepwise and stochastic search approaches identified four T1D association signals, with the major effect tagged by the single nucleotide polymorphism, rs12722496. In contrast, for MS, the stochastic search found two distinct competing models: a single candidate causal variant, tagged by rs2104286 and reported previously using stepwise analysis; and a more complex model with two association signals, one of which was tagged by the major T1Dassociated rs12722496 and the other by rs56382813. There is low to moderate LD between rs2104286 and both rs12722496 and rs56382813 (r2 ≃ 0:3) and our two SNP model could not be recovered through a forward stepwise search after conditioning on rs2104286. Both signals in the two variant model for MS affect CD25 expression on distinct subpopulations of CD4+ T cells, which are key cells in the autoimmune process. The results support a shared causal variant for T1D and MS. Our study illustrates the benefit of using a purposely designed model search strategy for fine mapping and the advantage of combining disease and protein expression data.Author Summary: Genetic association studies have identified many DNA sequence variants that associate with disease risk. By exploiting the known correlation that exists between neighbouring variants in the genome, inference can be extended beyond those individual variants tested to identify sets within which a causal variant is likely to reside. However, this correlation, particularly in the presence of multiple disease causing variants in relative proximity, makes disentangling the specific causal variants difficult. Statistical approaches to this fine mapping problem have traditionally taken a stepwise search approach, beginning with the most associated variant in a region, then iteratively attempting to find additional associated variants. We adapted a stochastic search approach that avoids this stepwise process and is explicitly designed for dealing with highly correlated predictors to the fine mapping problem. We showed in simulated data that it outperforms its stepwise counterpart and other variable selection strategies such as the lasso. We applied our approach to understand the association of two immune-mediated diseases to a region on chromosome 10p15. We identified a model for multiple sclerosis containing two variants, neither of which was found through a stepwise search, and functionally linked both of these to the neighbouring candidate gene, IL2RA, in independent data. Our approach can be used to aid fine mapping of other disease-associated regions, which is critical for design of functional follow-up studies required to understand the mechanisms through which genetic variants influence disease.

Suggested Citation

  • Chris Wallace & Antony J Cutler & Nikolas Pontikos & Marcin L Pekalski & Oliver S Burren & Jason D Cooper & Arcadio Rubio García & Ricardo C Ferreira & Hui Guo & Neil M Walker & Deborah J Smyth & Step, 2015. "Dissection of a Complex Disease Susceptibility Region Using a Bayesian Stochastic Search Approach to Fine Mapping," PLOS Genetics, Public Library of Science, vol. 11(6), pages 1-22, June.
  • Handle: RePEc:plo:pgen00:1005272
    DOI: 10.1371/journal.pgen.1005272
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005272
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005272&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1005272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert E. Thurman & Eric Rynes & Richard Humbert & Jeff Vierstra & Matthew T. Maurano & Eric Haugen & Nathan C. Sheffield & Andrew B. Stergachis & Hao Wang & Benjamin Vernot & Kavita Garg & Sam John &, 2012. "The accessible chromatin landscape of the human genome," Nature, Nature, vol. 489(7414), pages 75-82, September.
    2. Clive J Hoggart & John C Whittaker & Maria De Iorio & David J Balding, 2008. "Simultaneous Analysis of All SNPs in Genome-Wide and Re-Sequencing Association Studies," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-8, July.
    3. Claudia Giambartolomei & Damjan Vukcevic & Eric E Schadt & Lude Franke & Aroon D Hingorani & Chris Wallace & Vincent Plagnol, 2014. "Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics," PLOS Genetics, Public Library of Science, vol. 10(5), pages 1-15, May.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    7. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Hutchinson & Hope Watson & Chris Wallace, 2020. "Improving the coverage of credible sets in Bayesian genetic fine-mapping," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    4. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    5. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    6. Murat Genç & M. Revan Özkale, 2021. "Usage of the GO estimator in high dimensional linear models," Computational Statistics, Springer, vol. 36(1), pages 217-239, March.
    7. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    8. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
    9. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    10. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    11. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    12. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    13. Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
    14. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    15. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
    16. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    17. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    18. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    19. Murat Genç, 2022. "A new double-regularized regression using Liu and lasso regularization," Computational Statistics, Springer, vol. 37(1), pages 159-227, March.
    20. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1005272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.