IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v57y2019i2d10.1007_s00181-018-1460-5.html
   My bibliography  Save this article

Penalization methods with group-wise sparsity: econometric applications to eBay Motors online auctions

Author

Listed:
  • Qing Wang

    (Wellesley College)

  • Dan Zhao

    (Yale University)

Abstract

This paper investigates several recent developments in statistical penalization methods with applications to econometric models and economic data. When the set of covariate variables can be categorized into groups, we propose to use the Group Lasso (Yuan and Lin in J R Stat Soc Ser B 68(1):49–67, 2006) and Sparse Group Lasso (Simon et al. in J Comput Graph Stat 22(2):231–245, 2013) techniques to achieve group-wise sparsity. When estimating a structural model in empirical auctions work, these methods can flexibly control for observable heterogeneity by producing better, simpler first-stage fits for the approaches as proposed by Haile et al. (in: NBER working paper no. 10105, 2003) and Athey and Haile (in: Chapter 60 in handbook of econometrics, Elsevier, Amsterdam, 2007). In applying these methods to eBay Motors auction data, the models with group-wise sparsity are compared to the benchmark models and commonly used penalization methods with only parameter-wise regularization. Empirical results show that the Sparse Group Lasso method yields comparable or even better prediction performance than its counterparts in both linear regression and binary classification. Furthermore, it can drastically reduce the complexity of the model and produce a much more parsimonious model.

Suggested Citation

  • Qing Wang & Dan Zhao, 2019. "Penalization methods with group-wise sparsity: econometric applications to eBay Motors online auctions," Empirical Economics, Springer, vol. 57(2), pages 683-704, August.
  • Handle: RePEc:spr:empeco:v:57:y:2019:i:2:d:10.1007_s00181-018-1460-5
    DOI: 10.1007/s00181-018-1460-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-018-1460-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-018-1460-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory Lewis, 2011. "Asymmetric Information, Adverse Selection and Online Disclosure: The Case of eBay Motors," American Economic Review, American Economic Association, vol. 101(4), pages 1535-1546, June.
    2. Athey, Susan & Haile, Philip A., 2007. "Nonparametric Approaches to Auctions," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 60, Elsevier.
    3. Nicola Lacetera & Bradley J. Larsen & Devin G. Pope & Justin R. Sydnor, 2016. "Bid Takers or Market Makers? The Effect of Auctioneers on Auction Outcome," American Economic Journal: Microeconomics, American Economic Association, vol. 8(4), pages 195-229, November.
    4. Philip A. Haile & Han Hong & Matthew Shum, 2003. "Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions," Cowles Foundation Discussion Papers 1445, Cowles Foundation for Research in Economics, Yale University.
    5. Elena Krasnokutskaya, 2011. "Identification and Estimation of Auction Models with Unobserved Heterogeneity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(1), pages 293-327.
    6. Matt Shum & Phil Haile & Han Hong, 2003. "Nonparametric Tests for Common Values in First-Price Auctions," Economics Working Paper Archive 501, The Johns Hopkins University,Department of Economics.
    7. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    9. John Asker, 2010. "A Study of the Internal Organization of a Bidding Cartel," American Economic Review, American Economic Association, vol. 100(3), pages 724-762, June.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    12. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen Lin, 2023. "The effect of product quantity on willingness to pay: A meta‐regression analysis of beef valuation studies," Agribusiness, John Wiley & Sons, Ltd., vol. 39(3), pages 646-663, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. repec:vuw:vuwscr:19224 is not listed on IDEAS
    3. Hickman Brent R. & Hubbard Timothy P. & Sağlam Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 67-106, August.
    4. Bradley J Larsen, 2021. "The Efficiency of Real-World Bargaining: Evidence from Wholesale Used-Auto Auctions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(2), pages 851-882.
    5. Hickman Brent R. & Hubbard Timothy P. & Sağlam Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 67-106, August.
    6. Sağlam, Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Working Paper Series 19224, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    7. Dominic Coey & Bradley Larsen & Kane Sweeney, 2019. "The bidder exclusion effect," RAND Journal of Economics, RAND Corporation, vol. 50(1), pages 93-120, March.
    8. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    9. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    10. Marmer, Vadim & Shneyerov, Artyom, 2012. "Quantile-based nonparametric inference for first-price auctions," Journal of Econometrics, Elsevier, vol. 167(2), pages 345-357.
    11. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    12. Murat Genç & M. Revan Özkale, 2021. "Usage of the GO estimator in high dimensional linear models," Computational Statistics, Springer, vol. 36(1), pages 217-239, March.
    13. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    14. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
    15. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    16. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    17. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    18. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    19. Tobias Salz, 2020. "Intermediation and Competition in Search Markets: An Empirical Case Study," NBER Working Papers 27700, National Bureau of Economic Research, Inc.
    20. Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
    21. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.

    More about this item

    Keywords

    eBay Motors; Group Lasso; Group-wise sparsity; Penalization; Sparse Group Lasso;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:57:y:2019:i:2:d:10.1007_s00181-018-1460-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.