IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i2d10.1007_s00362-018-01062-y.html
   My bibliography  Save this article

An unexpected connection between Bayes A-optimal designs and the group lasso

Author

Listed:
  • Guillaume Sagnol

    (Technische Universität Berlin)

  • Edouard Pauwels

    (Toulouse 3 Université Paul Sabatier)

Abstract

We show that the A-optimal design optimization problem over m design points in $${\mathbb {R}}^n$$ R n is equivalent to minimizing a quadratic function plus a group lasso sparsity inducing term over $$n\times m$$ n × m real matrices. This observation allows to describe several new algorithms for A-optimal design based on splitting and block coordinate decomposition. These techniques are well known and proved powerful to treat large scale problems in machine learning and signal processing communities. The proposed algorithms come with rigorous convergence guarantees and convergence rate estimate stemming from the optimization literature. Performances are illustrated on synthetic benchmarks and compared to existing methods for solving the optimal design problem.

Suggested Citation

  • Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:2:d:10.1007_s00362-018-01062-y
    DOI: 10.1007/s00362-018-01062-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-018-01062-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-018-01062-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pronzato, Luc, 2013. "A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2721-2728.
    2. Michal Černý & Milan Hladík, 2012. "Two complexity results on c-optimality in experimental design," Computational Optimization and Applications, Springer, vol. 51(3), pages 1397-1408, April.
    3. Gauthier, B. & Pronzato, L., 2017. "Convex relaxation for IMSE optimal design in random-field models," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 375-394.
    4. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    5. Marguerite Frank & Philip Wolfe, 1956. "An algorithm for quadratic programming," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 95-110, March.
    6. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    2. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    3. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
    4. Jérôme Bolte & Cyrille W. Combettes & Edouard Pauwels, 2024. "The Iterates of the Frank–Wolfe Algorithm May Not Converge," Mathematics of Operations Research, INFORMS, vol. 49(4), pages 2565-2578, November.
    5. Sarah Perrin & Thierry Roncalli, 2019. "Machine Learning Optimization Algorithms & Portfolio Allocation," Papers 1909.10233, arXiv.org.
    6. Xiaolong Qin & Nguyen Thai An, 2019. "Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets," Computational Optimization and Applications, Springer, vol. 74(3), pages 821-850, December.
    7. Guan Yu & Yufeng Liu, 2016. "Sparse Regression Incorporating Graphical Structure Among Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 707-720, April.
    8. Rafael E. Carrillo & Martin Leblanc & Baptiste Schubnel & Renaud Langou & Cyril Topfel & Pierre-Jean Alet, 2020. "High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution," Energies, MDPI, vol. 13(21), pages 1-17, November.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    11. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    12. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    13. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    14. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    15. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    18. Abdelfettah Laouzai & Rachid Ouafi, 2022. "A prediction model for atmospheric pollution reduction from urban traffic," Environment and Planning B, , vol. 49(2), pages 566-584, February.
    19. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    20. Junhong Lin & Lorenzo Rosasco & Silvia Villa & Ding-Xuan Zhou, 2018. "Modified Fejér sequences and applications," Computational Optimization and Applications, Springer, vol. 71(1), pages 95-113, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:2:d:10.1007_s00362-018-01062-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.