IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i4d10.1007_s00180-021-01184-2.html
   My bibliography  Save this article

Unified mean-variance feature screening for ultrahigh-dimensional regression

Author

Listed:
  • Liming Wang

    (Nanjing University of Finance and Economics Hongshan College
    Nanjing University of Information Science and Technology)

  • Xingxiang Li

    (Xi’an Jiaotong University)

  • Xiaoqing Wang

    (Nanjing University of Finance and Economics)

  • Peng Lai

    (Nanjing University of Information Science and Technology)

Abstract

Feature screening is a popular and efficient statistical technique in processing ultrahigh-dimensional data. When a regression model consists both categorical and continuous predictors, a unified feature screening procedure is needed. Thus, we propose a unified mean-variance sure independence screening (UMV-SIS) for this setup. The mean-variance (MV), an effective utility to measure the dependence between two random variables, is widely used in feature screening for discriminant analysis. In this paper, we advocate using the kernel smoothing method to estimate MV between two continuous variables, thereby extending it to screen categorical and continuous predictors simultaneously. Besides the uniformity for screening, UMV-SIS is a model-free procedure without any specification of a regression model; this broadens the scope of its application. In theory, we show that the UMV-SIS procedure has the sure screening and ranking consistency properties under mild conditions. To solve some difficulties in marginal feature screening for linear model and further enhance the screening performance of our proposed method, an iterative UMV-SIS procedure is developed. The promising performances of the new method are supported by extensive numerical examples.

Suggested Citation

  • Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01184-2
    DOI: 10.1007/s00180-021-01184-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01184-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01184-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
    2. Hengjian Cui & Runze Li & Wei Zhong, 2015. "Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 630-641, June.
    3. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Efang Kong & Yingcun Xia & Wei Zhong, 2019. "Composite Coefficient of Determination and Its Application in Ultrahigh Dimensional Variable Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1740-1751, October.
    6. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    7. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
    8. Yan, Xiaodong & Tang, Niansheng & Xie, Jinhan & Ding, Xianwen & Wang, Zhiqiang, 2018. "Fused mean–variance filter for feature screening," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 18-32.
    9. Chen Xu & Jiahua Chen, 2014. "The Sparse MLE for Ultrahigh-Dimensional Feature Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1257-1269, September.
    10. Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.
    11. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    12. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    13. Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
    14. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    15. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xingxiang & Cheng, Guosheng & Wang, Liming & Lai, Peng & Song, Fengli, 2017. "Ultrahigh dimensional feature screening via projection," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 88-104.
    2. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    3. Min Chen & Yimin Lian & Zhao Chen & Zhengjun Zhang, 2017. "Sure explained variability and independence screening," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 849-883, October.
    4. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    5. Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
    6. Sheng, Ying & Wang, Qihua, 2020. "Model-free feature screening for ultrahigh dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    7. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    8. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    9. Zhao, Shaofei & Fu, Guifang, 2022. "Distribution-free and model-free multivariate feature screening via multivariate rank distance correlation," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    10. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    11. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
    13. Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
    14. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    15. Xiang-Jie Li & Xue-Jun Ma & Jing-Xiao Zhang, 2017. "Robust feature screening for varying coefficient models via quantile partial correlation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 17-49, January.
    16. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    17. Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    18. Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
    19. Lai, Peng & Song, Fengli & Chen, Kaiwen & Liu, Zhi, 2017. "Model free feature screening with dependent variable in ultrahigh dimensional binary classification," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 141-148.
    20. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:4:d:10.1007_s00180-021-01184-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.