IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v67y2018i5p1237-1273.html
   My bibliography  Save this article

Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection

Author

Listed:
  • T. Rajala
  • D. J. Murrell
  • S. C. Olhede

Abstract

We propose a method for detecting significant interactions in very large multivariate spatial point patterns. This methodology thus develops high dimensional data understanding in the point process setting. The method is based on modelling the patterns by using a flexible Gibbs point process model to characterize point‐to‐point interactions at different spatial scales directly. By using the Gibbs framework significant interactions can also be captured at small scales. Subsequently, the Gibbs point process is fitted by using a pseudolikelihood approximation, and we select significant interactions automatically by using the group lasso penalty with this likelihood approximation. Thus we estimate the multivariate interactions stably even in this setting. We demonstrate the feasibility of the method with a simulation study and show its power by applying it to a large and complex rainforest plant population data set of 83 species.

Suggested Citation

  • T. Rajala & D. J. Murrell & S. C. Olhede, 2018. "Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1237-1273, November.
  • Handle: RePEc:bla:jorssc:v:67:y:2018:i:5:p:1237-1273
    DOI: 10.1111/rssc.12281
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12281
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12281?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohler, G. O. & Short, M. B. & Brantingham, P. J. & Schoenberg, F. P. & Tita, G. E., 2011. "Self-Exciting Point Process Modeling of Crime," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 100-108.
    2. Grabarnik, Pavel & Särkkä, Aila, 2009. "Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions," Ecological Modelling, Elsevier, vol. 220(9), pages 1232-1240.
    3. Scheipl, Fabian, 2011. "spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i14).
    4. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    5. Jean-François Coeurjolly & Ege Rubak, 2013. "Fast Covariance Estimation for Innovations Computed from a Spatial Gibbs Point Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 669-684, December.
    6. Radu S. Stoica & Vicent J. Martínez & Enn Saar, 2007. "A three‐dimensional object point process for detection of cosmic filaments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 459-477, August.
    7. Rasmus Waagepetersen & Yongtao Guan & Abdollah Jalilian & Jorge Mateu, 2016. "Analysis of multispecies point patterns by using multivariate log-Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(1), pages 77-96, January.
    8. A. Baddeley & M. Lieshout, 1995. "Area-interaction point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 601-619, December.
    9. Adrian Baddeley & Jean-François Coeurjolly & Ege Rubak & Rasmus Waagepetersen, 2014. "Logistic regression for spatial Gibbs point processes," Biometrika, Biometrika Trust, vol. 101(2), pages 377-392.
    10. Jean-François Coeurjolly & Frédéric Lavancier, 2013. "Residuals and goodness-of-fit tests for stationary marked Gibbs point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 247-276, March.
    11. Frédéric Lavancier & Jesper Møller, 2016. "Modelling Aggregation on the Large Scale and Regularity on the Small Scale in Spatial Point Pattern Datasets," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 587-609, June.
    12. Anders Brix & Jesper Moller, 2001. "Space‐time Multi Type Log Gaussian Cox Processes with a View to Modelling Weeds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(3), pages 471-488, September.
    13. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    14. Baddeley, Adrian & Turner, Rolf & Mateu, Jorge & Bevan, Andrew, 2013. "Hybrids of Gibbs Point Process Models and Their Implementation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i11).
    15. Peter Diggle & Pingping Zheng & Peter Durr, 2005. "Nonparametric estimation of spatial segregation in a multivariate point process: bovine tuberculosis in Cornwall, UK," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 645-658, June.
    16. Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
    17. Alan Gelfand & Alexandra Schmidt & Sudipto Banerjee & C. Sirmans, 2004. "Nonstationary multivariate process modeling through spatially varying coregionalization," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 263-312, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristian Bjørn Hessellund & Ganggang Xu & Yongtao Guan & Rasmus Waagepetersen, 2022. "Second‐order semi‐parametric inference for multivariate log Gaussian Cox processes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 244-268, January.
    2. James S. Martin & David J. Murrell & Sofia C. Olhede, 2023. "Multivariate geometric anisotropic Cox processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 1420-1465, September.
    3. Ismaïla Ba & Jean‐François Coeurjolly, 2023. "Inference for low‐ and high‐dimensional inhomogeneous Gibbs point processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(3), pages 993-1021, September.
    4. Eckardt, Matthias & González, Jonatan A. & Mateu, Jorge, 2021. "Graphical modelling and partial characteristics for multitype and multivariate-marked spatio-temporal point processes," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    5. Ian Flint & Nick Golding & Peter Vesk & Yan Wang & Aihua Xia, 2022. "The saturated pairwise interaction Gibbs point process as a joint species distribution model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1721-1752, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    2. Ian Flint & Nick Golding & Peter Vesk & Yan Wang & Aihua Xia, 2022. "The saturated pairwise interaction Gibbs point process as a joint species distribution model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1721-1752, November.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    5. Bianca Maria Colosimo & Luca Pagani & Marco Grasso, 2024. "Modeling spatial point processes in video-imaging via Ripley’s K-function: an application to spatter analysis in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(1), pages 429-447, January.
    6. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    7. Mohit Agrawal & Joseph G. Altonji & Richard K. Mansfield, 2019. "Quantifying Family, School, and Location Effects in the Presence of Complementarities and Sorting," Journal of Labor Economics, University of Chicago Press, vol. 37(S1), pages 11-83.
    8. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    9. Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
    10. Choi, Sungwoo & Park, Junyong, 2014. "Nonparametric additive model with grouped lasso and maximizing area under the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 313-325.
    11. Xian Zhang & Dingtao Peng, 2022. "Solving constrained nonsmooth group sparse optimization via group Capped- $$\ell _1$$ ℓ 1 relaxation and group smoothing proximal gradient algorithm," Computational Optimization and Applications, Springer, vol. 83(3), pages 801-844, December.
    12. Caner, Mehmet, 2023. "Generalized linear models with structured sparsity estimators," Journal of Econometrics, Elsevier, vol. 236(2).
    13. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    14. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    15. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
    16. A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
    17. Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
    18. Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
    19. Mingrui Zhong & Zanhua Yin & Zhichao Wang, 2023. "Variable Selection for Sparse Logistic Regression with Grouped Variables," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
    20. Wei, Fengrong & Zhu, Hongxiao, 2012. "Group coordinate descent algorithms for nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 316-326.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:67:y:2018:i:5:p:1237-1273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.