IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p686-d1346583.html
   My bibliography  Save this article

Nonparametric Additive Regression for High-Dimensional Group Testing Data

Author

Listed:
  • Xinlei Zuo

    (School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China)

  • Juan Ding

    (School of Mathematics, Hohai University, Nanjing 210098, China)

  • Junjian Zhang

    (School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China)

  • Wenjun Xiong

    (School of Mathematics and Statistics, Guangxi Normal University, Guilin 541004, China)

Abstract

Group testing has been verified as a cost-effective and time-efficient approach, where the individual samples are pooled with a predefined group size for subsequent testing. Recent research has explored the integration of covariate information to improve the modeling of the group testing data. While existing works for high-dimensional data primarily focus on parametric models, this study considers a more flexible generalized nonparametric additive model. Nonlinear components are approximated using B-splines and model estimation under the sparsity assumption is derived employing group lasso. Theoretical results demonstrate that our method selects the true model with a high probability and provides consistent estimates. Numerical studies are conducted to illustrate the good performance of our proposed method, using both simulated and real data.

Suggested Citation

  • Xinlei Zuo & Juan Ding & Junjian Zhang & Wenjun Xiong, 2024. "Nonparametric Additive Regression for High-Dimensional Group Testing Data," Mathematics, MDPI, vol. 12(5), pages 1-21, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:686-:d:1346583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Vansteelandt & E. Goetghebeur & T. Verstraeten, 2000. "Regression Models for Disease Prevalence with Diagnostic Tests on Pools of Serum Samples," Biometrics, The International Biometric Society, vol. 56(4), pages 1126-1133, December.
    2. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    3. A. Delaigle & P. Hall & J. R. Wishart, 2014. "New approaches to nonparametric and semiparametric regression for univariate and multivariate group testing data," Biometrika, Biometrika Trust, vol. 101(3), pages 567-585.
    4. Bilder, Christopher R. & Tebbs, Joshua M. & Chen, Peng, 2010. "Informative Retesting," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 942-955.
    5. Peng Chen & Joshua M. Tebbs & Christopher R. Bilder, 2009. "Group Testing Regression Models with Fixed and Random Effects," Biometrics, The International Biometric Society, vol. 65(4), pages 1270-1278, December.
    6. Karl B. Gregory & Dewei Wang & Christopher S. McMahan, 2019. "Adaptive elastic net for group testing," Biometrics, The International Biometric Society, vol. 75(1), pages 13-23, March.
    7. Hae-Young Kim & Michael G. Hudgens & Jonathan M. Dreyfuss & Daniel J. Westreich & Christopher D. Pilcher, 2007. "Comparison of Group Testing Algorithms for Case Identification in the Presence of Test Error," Biometrics, The International Biometric Society, vol. 63(4), pages 1152-1163, December.
    8. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    9. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    10. D. Wang & C. S. McMahan & C. M. Gallagher & K. B. Kulasekera, 2014. "Semiparametric group testing regression models," Biometrika, Biometrika Trust, vol. 101(3), pages 587-598.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chase N. Joyner & Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2020. "From mixed effects modeling to spike and slab variable selection: A Bayesian regression model for group testing data," Biometrics, The International Biometric Society, vol. 76(3), pages 913-923, September.
    2. Karl B. Gregory & Dewei Wang & Christopher S. McMahan, 2019. "Adaptive elastic net for group testing," Biometrics, The International Biometric Society, vol. 75(1), pages 13-23, March.
    3. Xianzheng Huang & Md Shamim Sarker Warasi, 2017. "Maximum Likelihood Estimators in Regression Models for Error-prone Group Testing Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 918-931, December.
    4. Md S. Warasi & Laura L. Hungerford & Kevin Lahmers, 2022. "Optimizing Pooled Testing for Estimating the Prevalence of Multiple Diseases," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 713-727, December.
    5. Christopher S. McMahan & Joshua M. Tebbs & Timothy E. Hanson & Christopher R. Bilder, 2017. "Bayesian regression for group testing data," Biometrics, The International Biometric Society, vol. 73(4), pages 1443-1452, December.
    6. Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2012. "Informative Dorfman Screening," Biometrics, The International Biometric Society, vol. 68(1), pages 287-296, March.
    7. D. Wang & C. S. McMahan & C. M. Gallagher & K. B. Kulasekera, 2014. "Semiparametric group testing regression models," Biometrika, Biometrika Trust, vol. 101(3), pages 587-598.
    8. A. Delaigle & P. Hall & J. R. Wishart, 2014. "New approaches to nonparametric and semiparametric regression for univariate and multivariate group testing data," Biometrika, Biometrika Trust, vol. 101(3), pages 567-585.
    9. Peng Chen & Joshua M. Tebbs & Christopher R. Bilder, 2009. "Group Testing Regression Models with Fixed and Random Effects," Biometrics, The International Biometric Society, vol. 65(4), pages 1270-1278, December.
    10. Nguyen, Ngoc T. & Bish, Ebru K. & Bish, Douglas R., 2021. "Optimal pooled testing design for prevalence estimation under resource constraints," Omega, Elsevier, vol. 105(C).
    11. Samuel D. Lendle & Michael G. Hudgens & Bahjat F. Qaqish, 2012. "Group Testing for Case Identification with Correlated Responses," Biometrics, The International Biometric Society, vol. 68(2), pages 532-540, June.
    12. Yaakov Malinovsky & Paul S. Albert & Enrique F. Schisterman, 2012. "Pooling Designs for Outcomes under a Gaussian Random Effects Model," Biometrics, The International Biometric Society, vol. 68(1), pages 45-52, March.
    13. Joshua M. Tebbs & Christopher S. McMahan & Christopher R. Bilder, 2013. "Two-Stage Hierarchical Group Testing for Multiple Infections with Application to the Infertility Prevention Project," Biometrics, The International Biometric Society, vol. 69(4), pages 1064-1073, December.
    14. Pritha Guha, 2022. "Application of Pooled Testing Methodologies in Tackling the COVID-19 Pandemic," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 47(1), pages 7-21, February.
    15. Christopher S. McMahan & Joshua M. Tebbs & Christopher R. Bilder, 2012. "Two-Dimensional Informative Array Testing," Biometrics, The International Biometric Society, vol. 68(3), pages 793-804, September.
    16. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    17. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    18. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    19. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    20. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:686-:d:1346583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.