A Penalty Approach to Differential Item Functioning in Rasch Models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-013-9377-6
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Geoff Masters, 1982. "A rasch model for partial credit scoring," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 149-174, June.
- Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
- Mair, Patrick & Hatzinger, Reinhold, 2007. "Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i09).
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Nambury Raju, 1988. "The area between two item characteristic curves," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 495-502, December.
- Edgar Merkle & Achim Zeileis, 2013. "Tests of Measurement Invariance Without Subgroups: A Generalization of Classical Methods," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 59-82, January.
- Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Gerhard Tutz & Harald Binder, 2006. "Generalized Additive Modeling with Implicit Variable Selection by Likelihood-Based Boosting," Biometrics, The International Biometric Society, vol. 62(4), pages 961-971, December.
- Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
- Erling Andersen, 1973. "A goodness of fit test for the rasch model," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 123-140, March.
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
- Hans Nyquist, 1991. "Restricted Estimation of Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 133-141, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Siliang Zhang & Yunxiao Chen, 2022. "Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1473-1502, December.
- Po-Hsien Huang & Hung Chen & Li-Jen Weng, 2017. "A Penalized Likelihood Method for Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 329-354, June.
- Alexander Robitzsch, 2020. "L p Loss Functions in Invariance Alignment and Haberman Linking with Few or Many Groups," Stats, MDPI, vol. 3(3), pages 1-38, August.
- Zhang, Siliang & Chen, Yunxiao, 2022. "Computation for latent variable model estimation: a unified stochastic proximal framework," LSE Research Online Documents on Economics 114489, London School of Economics and Political Science, LSE Library.
- Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2024. "DIF analysis with unknown groups and anchor items," LSE Research Online Documents on Economics 121991, London School of Economics and Political Science, LSE Library.
- Gerhard Tutz & Moritz Berger, 2016. "Item-focussed Trees for the Identification of Items in Differential Item Functioning," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 727-750, September.
- Paul Boeck & Sun-Joo Cho, 2021. "Not all DIF is shaped similarly," Psychometrika, Springer;The Psychometric Society, vol. 86(3), pages 712-716, September.
- Chen, Yunxiao & Li, Chengcheng & Ouyang, Jing & Xu, Gongjun, 2023. "DIF statistical inference without knowing anchoring items," LSE Research Online Documents on Economics 119923, London School of Economics and Political Science, LSE Library.
- Ting Wang & Carolin Strobl & Achim Zeileis & Edgar C. Merkle, 2018. "Score-Based Tests of Differential Item Functioning via Pairwise Maximum Likelihood Estimation," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 132-155, March.
- Gerhard Tutz, 2022. "Item Response Thresholds Models: A General Class of Models for Varying Types of Items," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1238-1269, December.
- Ke-Hai Yuan & Hongyun Liu & Yuting Han, 2021. "Differential Item Functioning Analysis Without A Priori Information on Anchor Items: QQ Plots and Graphical Test," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 345-377, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
- Faisal Maqbool Zahid & Gerhard Tutz, 2013. "Proportional Odds Models with High‐Dimensional Data Structure," International Statistical Review, International Statistical Institute, vol. 81(3), pages 388-406, December.
- Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
- Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
- Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.
- Chen, Shunjie & Yang, Sijia & Wang, Pei & Xue, Liugen, 2023. "Two-stage penalized algorithms via integrating prior information improve gene selection from omics data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
- Faisal Zahid & Gerhard Tutz, 2013. "Ridge estimation for multinomial logit models with symmetric side constraints," Computational Statistics, Springer, vol. 28(3), pages 1017-1034, June.
- Wei, Fengrong & Zhu, Hongxiao, 2012. "Group coordinate descent algorithms for nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 316-326.
- Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
- Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Efficient Estimation and Forecasting with the Adaptive LASSO and the Adaptive Group LASSO in Vector Autoregressions," CREATES Research Papers 2012-38, Department of Economics and Business Economics, Aarhus University.
- Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Post-Print hal-01954386, HAL.
- Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- A. Karagrigoriou & C. Koukouvinos & K. Mylona, 2010. "On the advantages of the non-concave penalized likelihood model selection method with minimum prediction errors in large-scale medical studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-24.
- Lichun Wang & Yuan You & Heng Lian, 2015. "Convergence and sparsity of Lasso and group Lasso in high-dimensional generalized linear models," Statistical Papers, Springer, vol. 56(3), pages 819-828, August.
- Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
- Luoying Yang & Tong Tong Wu, 2023. "Model‐based clustering of high‐dimensional longitudinal data via regularization," Biometrics, The International Biometric Society, vol. 79(2), pages 761-774, June.
More about this item
Keywords
Rasch model; differential item functioning; penalized maximum likelihood; DIF lasso;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:80:y:2015:i:1:p:21-43. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.