IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v40y2015i2p111-135.html
   My bibliography  Save this article

Detection of Differential Item Functioning Using the Lasso Approach

Author

Listed:
  • David Magis

    (KU Leuven University of Liège)

  • Francis Tuerlinckx

    (University of Leuven)

  • Paul De Boeck

    (Ohio State University University of Leuven)

Abstract

This article proposes a novel approach to detect differential item functioning (DIF) among dichotomously scored items. Unlike standard DIF methods that perform an item-by-item analysis, we propose the “LR lasso DIF method†: logistic regression (LR) model is formulated for all item responses. The model contains item-specific intercepts, an effect of the sum score, and item-group interaction (i.e., DIF) effects, with a lasso penalty on all DIF parameters. Optimal penalty parameter selection is investigated through several known information criteria (Akaike information criterion, Bayesian information criterion, and cross validation) as well as through a newly developed alternative. A simulation study was conducted to compare the global performance of the suggested LR lasso DIF method to the LR and Mantel–Haenszel methods (in terms of false alarm and hit rates). It is concluded that for small samples, the LR lasso DIF approach globally outperforms the LR method, and also the Mantel–Haenszel method, especially in the presence of item impact, while it yields similar results with larger samples.

Suggested Citation

  • David Magis & Francis Tuerlinckx & Paul De Boeck, 2015. "Detection of Differential Item Functioning Using the Lasso Approach," Journal of Educational and Behavioral Statistics, , vol. 40(2), pages 111-135, April.
  • Handle: RePEc:sae:jedbes:v:40:y:2015:i:2:p:111-135
    DOI: 10.3102/1076998614559747
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998614559747
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998614559747?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robin Shealy & William Stout, 1993. "A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 159-194, June.
    2. Nambury Raju, 1988. "The area between two item characteristic curves," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 495-502, December.
    3. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    6. Wu, Tiee-Jian & Sepulveda, Alfred, 1998. "The weighted average information criterion for order selection in time series and regression models," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 1-10, July.
    7. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerhard Tutz & Moritz Berger, 2016. "Item-focussed Trees for the Identification of Items in Differential Item Functioning," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 727-750, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    3. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    4. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    5. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    6. Oskar Allerbo & Rebecka Jörnsten, 2022. "Flexible, non-parametric modeling using regularized neural networks," Computational Statistics, Springer, vol. 37(4), pages 2029-2047, September.
    7. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    8. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    9. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    10. Fang, Xiaolei & Paynabar, Kamran & Gebraeel, Nagi, 2017. "Multistream sensor fusion-based prognostics model for systems with single failure modes," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 322-331.
    11. Daniel, Jeffrey & Horrocks, Julie & Umphrey, Gary J., 2018. "Penalized composite likelihoods for inhomogeneous Gibbs point process models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 104-116.
    12. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    13. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    14. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    15. Sun, Fei & Zhang, Qi, 2023. "Robust transfer learning of high-dimensional generalized linear model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    16. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.
    17. Xiaoyi Yang & Nynke M. D. Niezink & Rebecca Nugent, 2021. "Learning social networks from text data using covariate information," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1399-1423, December.
    18. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    19. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
    20. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:40:y:2015:i:2:p:111-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.