IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i7p1338-1352.html
   My bibliography  Save this article

On the degrees of freedom in shrinkage estimation

Author

Listed:
  • Kato, Kengo

Abstract

We study the degrees of freedom in shrinkage estimation of regression coefficients. Generalizing the idea of the Lasso, we consider the problem of estimating the coefficients by minimizing the sum of squares with the constraint that the coefficients belong to a closed convex set. Based on a differential geometric approach, we derive an unbiased estimator of the degrees of freedom for this estimation method, under a smoothness assumption on the boundary of the closed convex set. The result presented in this paper is applicable to estimation with a wide class of constraints. As an application, we obtain a Cp type criterion and AIC for selecting tuning parameters.

Suggested Citation

  • Kato, Kengo, 2009. "On the degrees of freedom in shrinkage estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1338-1352, August.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:7:p:1338-1352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00275-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Bradley Efron, 2004. "The Estimation of Prediction Error: Covariance Penalties and Cross-Validation," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 619-632, January.
    3. Li, Youjuan & Liu, Yufeng & Zhu, Ji, 2007. "Quantile Regression in Reproducing Kernel Hilbert Spaces," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 255-268, March.
    4. Kuriki, Satoshi & Takemura, Akimichi, 2000. "Shrinkage Estimation towards a Closed Convex Set with a Smooth Boundary," Journal of Multivariate Analysis, Elsevier, vol. 75(1), pages 79-111, October.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuel Vaiter & Charles Deledalle & Jalal Fadili & Gabriel Peyré & Charles Dossal, 2017. "The degrees of freedom of partly smooth regularizers," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 791-832, August.
    2. Guillaume Allaire Pouliot & Zhen Xie, 2022. "Degrees of Freedom and Information Criteria for the Synthetic Control Method," Papers 2207.02943, arXiv.org.
    3. Xiaoli Gao, 2018. "A flexible shrinkage operator for fussy grouped variable selection," Statistical Papers, Springer, vol. 59(3), pages 985-1008, September.
    4. James Younker, 2022. "Calculating Effective Degrees of Freedom for Forecast Combinations and Ensemble Models," Discussion Papers 2022-19, Bank of Canada.
    5. María José Lombardía & Esther López‐Vizcaíno & Cristina Rueda, 2017. "Mixed generalized Akaike information criterion for small area models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1229-1252, October.
    6. María José Lombardía & Esther López-Vizcaíno & Cristina Rueda, 2021. "Selection model for domains across time: application to labour force survey by economic activities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 228-254, March.
    7. Rueda, Cristina, 2013. "Degrees of freedom and model selection in semiparametric additive monotone regression," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 88-99.
    8. Hettihewa, Samanthala & Saha, Shrabani & Zhang, Hanxiong, 2018. "Does an aging population influence stock markets? Evidence from New Zealand," Economic Modelling, Elsevier, vol. 75(C), pages 142-158.
    9. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    10. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    11. Minami, Kentaro, 2020. "Degrees of freedom in submodular regularization: A computational perspective of Stein’s unbiased risk estimate," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    12. Luigi Augugliaro & Angelo M. Mineo & Ernst C. Wit, 2013. "Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 471-498, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    4. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    6. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    7. Gerhard Tutz & Jan Gertheiss, 2014. "Rating Scales as Predictors—The Old Question of Scale Level and Some Answers," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 357-376, July.
    8. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    9. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
    10. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    11. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
    12. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    13. Qian, Junhui & Su, Liangjun, 2016. "Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso," Journal of Econometrics, Elsevier, vol. 191(1), pages 86-109.
    14. Ismail Shah & Hina Naz & Sajid Ali & Amani Almohaimeed & Showkat Ahmad Lone, 2023. "A New Quantile-Based Approach for LASSO Estimation," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    15. Zou, Hui & Yuan, Ming, 2008. "Regularized simultaneous model selection in multiple quantiles regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5296-5304, August.
    16. Sunkyung Kim & Wei Pan & Xiaotong Shen, 2013. "Network-Based Penalized Regression With Application to Genomic Data," Biometrics, The International Biometric Society, vol. 69(3), pages 582-593, September.
    17. Howard D. Bondell & Brian J. Reich, 2009. "Simultaneous Factor Selection and Collapsing Levels in ANOVA," Biometrics, The International Biometric Society, vol. 65(1), pages 169-177, March.
    18. Hirose, Kei & Tateishi, Shohei & Konishi, Sadanori, 2013. "Tuning parameter selection in sparse regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 28-40.
    19. Minami, Kentaro, 2020. "Degrees of freedom in submodular regularization: A computational perspective of Stein’s unbiased risk estimate," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    20. Chen, Shunjie & Yang, Sijia & Wang, Pei & Xue, Liugen, 2023. "Two-stage penalized algorithms via integrating prior information improve gene selection from omics data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:7:p:1338-1352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.