IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v112y2017icp1-13.html
   My bibliography  Save this article

Variable selection for high-dimensional genomic data with censored outcomes using group lasso prior

Author

Listed:
  • Lee, Kyu Ha
  • Chakraborty, Sounak
  • Sun, Jianguo

Abstract

The variable selection problem is discussed in the context of high-dimensional failure time data arising from the accelerated failure time model. A data augmentation approach is employed in order to deal with censored survival times and to facilitate prior-posterior conjugacy. To identify a set of grouped relevant covariates, a shrinkage prior distribution is specified for regression coefficients mimicking the effect of group lasso penalty. It is noted that unlike the corresponding frequentist method, a Bayesian penalized regression approach cannot shrink the estimates of coefficients to exact zeros in general. Towards resolving the issue, a two-stage thresholding method that exploits the scaled neighborhood criterion and the Bayesian information criterion is devised. Simulation studies are performed to assess the robustness and performance of the proposed method in terms of variable selection accuracy and predictive power. The method is successfully applied to a set of microarray data on the individuals diagnosed with diffuse large B-cell lymphoma. In addition, an R package called psbcGroup, which can be downloaded freely from CRAN, is developed for the implementation of the methods.

Suggested Citation

  • Lee, Kyu Ha & Chakraborty, Sounak & Sun, Jianguo, 2017. "Variable selection for high-dimensional genomic data with censored outcomes using group lasso prior," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 1-13.
  • Handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:1-13
    DOI: 10.1016/j.csda.2017.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300440
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fushing Hsieh, 2001. "On heteroscedastic hazards regression models: theory and application," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(1), pages 63-79.
    2. Lee Kyu Ha & Chakraborty Sounak & Sun Jianguo, 2011. "Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, April.
    3. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    4. P. J. Brown & M. Vannucci & T. Fearn, 1998. "Multivariate Bayesian variable selection and prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(3), pages 627-641.
    5. Engler David & Li Yi, 2009. "Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, February.
    6. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    7. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    8. Tibshirani Robert J., 2009. "Univariate Shrinkage in the Cox Model for High Dimensional Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-20, April.
    9. Jian Huang & Shuangge Ma & Huiliang Xie, 2006. "Regularized Estimation in the Accelerated Failure Time Model with High-Dimensional Covariates," Biometrics, The International Biometric Society, vol. 62(3), pages 813-820, September.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    12. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    13. Chris T. Volinsky & Adrian E. Raftery, 2000. "Bayesian Information Criterion for Censored Survival Models," Biometrics, The International Biometric Society, vol. 56(1), pages 256-262, March.
    14. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Yin & Sihai Dave Zhao & Feng Liang, 2022. "Bayesian penalized Buckley-James method for high dimensional bivariate censored regression models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 282-318, April.
    2. Huang Hailin & Shangguan Jizi & Ruan Peifeng & Liang Hua, 2019. "Bi-level feature selection in high dimensional AFT models with applications to a genomic study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee Kyu Ha & Chakraborty Sounak & Sun Jianguo, 2011. "Bayesian Variable Selection in Semiparametric Proportional Hazards Model for High Dimensional Survival Data," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-32, April.
    2. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    3. Baragatti, M. & Pommeret, D., 2012. "A study of variable selection using g-prior distribution with ridge parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1920-1934.
    4. Sandra Stankiewicz, 2015. "Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net," Working Paper Series of the Department of Economics, University of Konstanz 2015-12, Department of Economics, University of Konstanz.
    5. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    6. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    7. Chakraborty, Sounak & Lozano, Aurelie C., 2019. "A graph Laplacian prior for Bayesian variable selection and grouping," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 72-91.
    8. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    9. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    10. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    11. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    13. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    14. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    15. Xiaoping Liu & Xiao-Bai Li & Sumit Sarkar, 2023. "Cost-Restricted Feature Selection for Data Acquisition," Management Science, INFORMS, vol. 69(7), pages 3976-3992, July.
    16. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
    17. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    18. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    19. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
    20. Naoki Hamada & Shunsuke Ichiki, 2022. "Free Disposal Hull Condition to Verify When Efficiency Coincides with Weak Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 248-270, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.