IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50728-9.html
   My bibliography  Save this article

High-throughput analysis of dendrite and axonal arbors reveals transcriptomic correlates of neuroanatomy

Author

Listed:
  • Olga Gliko

    (Allen Institute)

  • Matt Mallory

    (Allen Institute)

  • Rachel Dalley

    (Allen Institute)

  • Rohan Gala

    (Allen Institute)

  • James Gornet

    (California Institute of Technology)

  • Hongkui Zeng

    (Allen Institute)

  • Staci A. Sorensen

    (Allen Institute)

  • Uygar Sümbül

    (Allen Institute)

Abstract

Neuronal anatomy is central to the organization and function of brain cell types. However, anatomical variability within apparently homogeneous populations of cells can obscure such insights. Here, we report large-scale automation of neuronal morphology reconstruction and analysis on a dataset of 813 inhibitory neurons characterized using the Patch-seq method, which enables measurement of multiple properties from individual neurons, including local morphology and transcriptional signature. We demonstrate that these automated reconstructions can be used in the same manner as manual reconstructions to understand the relationship between some, but not all, cellular properties used to define cell types. We uncover gene expression correlates of laminar innervation on multiple transcriptomically defined neuronal subclasses and types. In particular, our results reveal correlates of the variability in Layer 1 (L1) axonal innervation in a transcriptomically defined subpopulation of Martinotti cells in the adult mouse neocortex.

Suggested Citation

  • Olga Gliko & Matt Mallory & Rachel Dalley & Rohan Gala & James Gornet & Hongkui Zeng & Staci A. Sorensen & Uygar Sümbül, 2024. "High-throughput analysis of dendrite and axonal arbors reveals transcriptomic correlates of neuroanatomy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50728-9
    DOI: 10.1038/s41467-024-50728-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50728-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50728-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masanori Murayama & Enrique Pérez-Garci & Thomas Nevian & Tobias Bock & Walter Senn & Matthew E. Larkum, 2009. "Dendritic encoding of sensory stimuli controlled by deep cortical interneurons," Nature, Nature, vol. 457(7233), pages 1137-1141, February.
    2. Federico Scala & Dmitry Kobak & Matteo Bernabucci & Yves Bernaerts & Cathryn René Cadwell & Jesus Ramon Castro & Leonard Hartmanis & Xiaolong Jiang & Sophie Laturnus & Elanine Miranda & Shalaka Mulher, 2021. "Phenotypic variation of transcriptomic cell types in mouse motor cortex," Nature, Nature, vol. 598(7879), pages 144-150, October.
    3. Bosiljka Tasic & Zizhen Yao & Lucas T. Graybuck & Kimberly A. Smith & Thuc Nghi Nguyen & Darren Bertagnolli & Jeff Goldy & Emma Garren & Michael N. Economo & Sarada Viswanathan & Osnat Penn & Trygve B, 2018. "Shared and distinct transcriptomic cell types across neocortical areas," Nature, Nature, vol. 563(7729), pages 72-78, November.
    4. Hanchuan Peng & Peng Xie & Lijuan Liu & Xiuli Kuang & Yimin Wang & Lei Qu & Hui Gong & Shengdian Jiang & Anan Li & Zongcai Ruan & Liya Ding & Zizhen Yao & Chao Chen & Mengya Chen & Tanya L. Daigle & R, 2021. "Morphological diversity of single neurons in molecularly defined cell types," Nature, Nature, vol. 598(7879), pages 174-181, October.
    5. Kenneth D Harris & Hannah Hochgerner & Nathan G Skene & Lorenza Magno & Linda Katona & Carolina Bengtsson Gonzales & Peter Somogyi & Nicoletta Kessaris & Sten Linnarsson & Jens Hjerling-Leffler, 2018. "Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics," PLOS Biology, Public Library of Science, vol. 16(6), pages 1-37, June.
    6. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    7. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Covert & Rohan Gala & Tim Wang & Karel Svoboda & Uygar Sümbül & Su-In Lee, 2023. "Predictive and robust gene selection for spatial transcriptomics," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Wendy Xueyi Wang & Julie L. Lefebvre, 2022. "Morphological pseudotime ordering and fate mapping reveal diversification of cerebellar inhibitory interneurons," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    3. Oren Amsalem & Hidehiko Inagaki & Jianing Yu & Karel Svoboda & Ran Darshan, 2024. "Sub-threshold neuronal activity and the dynamical regime of cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    5. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Kiya W. Govek & Patrick Nicodemus & Yuxuan Lin & Jake Crawford & Artur B. Saturnino & Hannah Cui & Kristi Zoga & Michael P. Hart & Pablo G. Camara, 2023. "CAJAL enables analysis and integration of single-cell morphological data using metric geometry," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Yina Wei & Anirban Nandi & Xiaoxuan Jia & Joshua H. Siegle & Daniel Denman & Soo Yeun Lee & Anatoly Buchin & Werner Geit & Clayton P. Mosher & Shawn Olsen & Costas A. Anastassiou, 2023. "Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    9. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    10. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    11. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    12. Xinrui Zhou & Wan Yi Seow & Norbert Ha & Teh How Cheng & Lingfan Jiang & Jeeranan Boonruangkan & Jolene Jie Lin Goh & Shyam Prabhakar & Nigel Chou & Kok Hao Chen, 2024. "Highly sensitive spatial transcriptomics using FISHnCHIPs of multiple co-expressed genes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    14. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    15. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    18. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    19. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    20. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50728-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.