IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i516p1427-1439.html
   My bibliography  Save this article

Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence

Author

Listed:
  • Yize Zhao
  • Matthias Chung
  • Brent A. Johnson
  • Carlos S. Moreno
  • Qi Long

Abstract

Our work is motivated by a prostate cancer study aimed at identifying mRNA and miRNA biomarkers that are predictive of cancer recurrence after prostatectomy. It has been shown in the literature that incorporating known biological information on pathway memberships and interactions among biomarkers improves feature selection of high-dimensional biomarkers in relation to disease risk. Biological information is often represented by graphs or networks, in which biomarkers are represented by nodes and interactions among them are represented by edges; however, biological information is often not fully known. For example, the role of microRNAs (miRNAs) in regulating gene expression is not fully understood and the miRNA regulatory network is not fully established, in which case new strategies are needed for feature selection. To this end, we treat unknown biological information as missing data (i.e., missing edges in graphs), different from commonly encountered missing data problems where variable values are missing. We propose a new concept of imputing unknown biological information based on observed data and define the imputed information as the novel biological information. In addition, we propose a hierarchical group penalty to encourage sparsity and feature selection at both the pathway level and the within-pathway level, which, combined with the imputation step, allows for incorporation of known and novel biological information. While it is applicable to general regression settings, we develop and investigate the proposed approach in the context of semiparametric accelerated failure time models motivated by our data example. Data application and simulation studies show that incorporation of novel biological information improves performance in risk prediction and feature selection and the proposed penalty outperforms the extensions of several existing penalties. Supplementary materials for this article are available online.

Suggested Citation

  • Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1427-1439
    DOI: 10.1080/01621459.2016.1164051
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1164051
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1164051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thierry Chekouo & Francesco C. Stingo & James D. Doecke & Kim-Anh Do, 2015. "miRNA–target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer," Biometrics, The International Biometric Society, vol. 71(2), pages 428-438, June.
    2. Zhezhen Jin, 2003. "Rank-based inference for the accelerated failure time model," Biometrika, Biometrika Trust, vol. 90(2), pages 341-353, June.
    3. Rolf Thermann & Matthias W. Hentze, 2007. "Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation," Nature, Nature, vol. 447(7146), pages 875-878, June.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Lynn M. Johnson & Robert L. Strawderman, 2009. "Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data," Biometrika, Biometrika Trust, vol. 96(3), pages 577-590.
    6. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    7. Rui Song & Wenbin Lu & Shuangge Ma & X. Jessie Jeng, 2014. "Censored rank independence screening for high-dimensional survival data," Biometrika, Biometrika Trust, vol. 101(4), pages 799-814.
    8. S. Wang & B. Nan & N. Zhu & J. Zhu, 2009. "Hierarchically penalized Cox regression with grouped variables," Biometrika, Biometrika Trust, vol. 96(2), pages 307-322.
    9. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    12. Xiaotong Shen & Wei Pan & Yunzhang Zhu, 2012. "Likelihood-Based Selection and Sharp Parameter Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 223-232, March.
    13. Heller, Glenn, 2007. "Smoothed Rank Regression With Censored Data," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 552-559, June.
    14. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yize Zhao & Ben Wu & Jian Kang, 2023. "Bayesian interaction selection model for multimodal neuroimaging data analysis," Biometrics, The International Biometric Society, vol. 79(2), pages 655-668, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.
    2. Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
    3. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    4. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    5. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    6. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    7. Ismail Shah & Hina Naz & Sajid Ali & Amani Almohaimeed & Showkat Ahmad Lone, 2023. "A New Quantile-Based Approach for LASSO Estimation," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    8. Sunkyung Kim & Wei Pan & Xiaotong Shen, 2013. "Network-Based Penalized Regression With Application to Genomic Data," Biometrics, The International Biometric Society, vol. 69(3), pages 582-593, September.
    9. Howard D. Bondell & Brian J. Reich, 2009. "Simultaneous Factor Selection and Collapsing Levels in ANOVA," Biometrics, The International Biometric Society, vol. 65(1), pages 169-177, March.
    10. Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
    11. Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
    12. Audrino, Francesco & Tetereva, Anastasija, 2019. "Sentiment spillover effects for US and European companies," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 542-567.
    13. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    14. Sandra Stankiewicz, 2015. "Forecasting Euro Area Macroeconomic Variables with Bayesian Adaptive Elastic Net," Working Paper Series of the Department of Economics, University of Konstanz 2015-12, Department of Economics, University of Konstanz.
    15. Rafael Blanquero & Emilio Carrizosa & Pepa Ramírez-Cobo & M. Remedios Sillero-Denamiel, 2021. "A cost-sensitive constrained Lasso," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 121-158, March.
    16. Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
    17. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    18. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    19. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    20. Wenyan Zhong & Xuewen Lu & Jingjing Wu, 2021. "Bi-level variable selection in semiparametric transformation models with right-censored data," Computational Statistics, Springer, vol. 36(3), pages 1661-1692, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:516:p:1427-1439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.