IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v42y2017i5p591-616.html
   My bibliography  Save this article

Bayesian Estimation of Multivariate Latent Regression Models: Gauss Versus Laplace

Author

Listed:
  • Steven Andrew Culpepper
  • Trevor Park

Abstract

A latent multivariate regression model is developed that employs a generalized asymmetric Laplace (GAL) prior distribution for regression coefficients. The model is designed for high-dimensional applications where an approximate sparsity condition is satisfied, such that many regression coefficients are near zero after accounting for all the model predictors. The model is applicable to large-scale assessments such as the National Assessment of Educational Progress (NAEP), which includes hundreds of student, teacher, and school predictors of latent achievement. Monte Carlo evidence suggests that employing the GAL prior provides more precise estimation of coefficients that equal zero in comparison to a multivariate normal (MVN) prior, which translates to more accurate model selection. Furthermore, the GAL yielded less biased estimates of regression coefficients in smaller samples. The developed model is applied to mathematics achievement data from the 2011 NAEP for 175,200 eighth graders. The GAL and MVN NAEP estimates were similar, but the GAL was more parsimonious by selecting 12 fewer (i.e., 83 of the 148) variable groups. There were noticeable differences between estimates computed with a GAL prior and plausible value regressions with the AM software (beta version 0.06.00). Implications of the results are discussed for test developers and applied researchers.

Suggested Citation

  • Steven Andrew Culpepper & Trevor Park, 2017. "Bayesian Estimation of Multivariate Latent Regression Models: Gauss Versus Laplace," Journal of Educational and Behavioral Statistics, , vol. 42(5), pages 591-616, October.
  • Handle: RePEc:sae:jedbes:v:42:y:2017:i:5:p:591-616
    DOI: 10.3102/1076998617700598
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998617700598
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998617700598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chris Hans, 2009. "Bayesian lasso regression," Biometrika, Biometrika Trust, vol. 96(4), pages 835-845.
    2. Jean-Paul Fox & Cees Glas, 2001. "Bayesian estimation of a multilevel IRT model using gibbs sampling," Psychometrika, Springer;The Psychometric Society, vol. 66(2), pages 271-288, June.
    3. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    4. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    5. Kozubowski, Tomasz J. & Podgórski, Krzysztof & Rychlik, Igor, 2013. "Multivariate generalized Laplace distribution and related random fields," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 59-72.
    6. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    2. Bergersen Linn Cecilie & Glad Ingrid K. & Lyng Heidi, 2011. "Weighted Lasso with Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-29, August.
    3. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    4. Baragatti, M. & Pommeret, D., 2012. "A study of variable selection using g-prior distribution with ridge parameter," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1920-1934.
    5. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    6. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    7. Chakraborty, Sounak & Lozano, Aurelie C., 2019. "A graph Laplacian prior for Bayesian variable selection and grouping," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 72-91.
    8. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    9. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    10. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    11. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    12. Philip Kostov & Thankom Arun & Samuel Annim, 2014. "Financial Services to the Unbanked: the case of the Mzansi intervention in South Africa," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(2), June.
    13. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    14. Battauz, Michela & Vidoni, Paolo, 2022. "A likelihood-based boosting algorithm for factor analysis models with binary data," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    15. Yan Huo & Jimmy de la Torre & Eun-Young Mun & Su-Young Kim & Anne Ray & Yang Jiao & Helene White, 2015. "A Hierarchical Multi-Unidimensional IRT Approach for Analyzing Sparse, Multi-Group Data for Integrative Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 834-855, September.
    16. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    17. Daniel F. Schmidt & Enes Makalic, 2013. "Estimation of stationary autoregressive models with the Bayesian LASSO," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(5), pages 517-531, September.
    18. Minerva Mukhopadhyay & Tapas Samanta, 2017. "A mixture of g-priors for variable selection when the number of regressors grows with the sample size," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 377-404, June.
    19. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    20. Fabian Scheipl & Thomas Kneib & Ludwig Fahrmeir, 2013. "Penalized likelihood and Bayesian function selection in regression models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 349-385, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:42:y:2017:i:5:p:591-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.