IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i5d10.1007_s10260-024-00768-8.html
   My bibliography  Save this article

Group penalized expectile regression

Author

Listed:
  • Mohamed Ouhourane

    (Université du Québec à Montréal)

  • Karim Oualkacha

    (Université du Québec à Montréal)

  • Archer Yi Yang

    (McGill University)

Abstract

The asymmetric least squares regression (or expectile regression) allows estimating unknown expectiles of the conditional distribution of a response variable as a function of a set of predictors and can handle heteroscedasticity issues. High dimensional data, such as omics data, are error prone and usually display heterogeneity. Such heterogeneity is often of scientific interest. In this work, we propose the Group Penalized Expectile Regression (GPER) approach, under high dimensional settings. GPER considers implementation of sparse expectile regression with group Lasso penalty and the group non-convex penalties. However, GPER may fail to tell which groups variables are important for the conditional mean and which groups of variables are important for the conditional scale/variance. To that end, we further propose a COupled Group Penalized Expectile Regression (COGPER) regression which can be efficiently solved by an algorithm similar to that for solving GPER. We establish theoretical properties of the proposed approaches. In particular, GPER and COGPER using the SCAD penalty or MCP is shown to consistently identify the two important subsets for the mean and scale simultaneously. We demonstrate the empirical performance of GPER and COGPER by simulated and real data.

Suggested Citation

  • Mohamed Ouhourane & Karim Oualkacha & Archer Yi Yang, 2024. "Group penalized expectile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(5), pages 1251-1313, November.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:5:d:10.1007_s10260-024-00768-8
    DOI: 10.1007/s10260-024-00768-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-024-00768-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-024-00768-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2022. "Extremile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1579-1586, September.
    2. Jun Zhao & Yi Zhang, 2018. "Variable selection in expectile regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(7), pages 1731-1746, April.
    3. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    4. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2019. "Extremiles: A New Perspective on Asymmetric Least Squares," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1366-1381, July.
    5. Wei, Fengrong & Zhu, Hongxiao, 2012. "Group coordinate descent algorithms for nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 316-326.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    8. Jun Zhao & Guan’ao Yan & Yi Zhang, 2022. "Robust estimation and shrinkage in ultrahigh dimensional expectile regression with heavy tails and variance heterogeneity," Statistical Papers, Springer, vol. 63(1), pages 1-28, February.
    9. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    10. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    11. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    12. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    13. Abdallah Mkhadri & Mohamed Ouhourane, 2015. "A group VISA algorithm for variable selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 41-60, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
    2. Li, Xiang & Li, Yu-Ning & Zhang, Li-Xin & Zhao, Jun, 2024. "Inference for high-dimensional linear expectile regression with de-biasing method," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    3. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    4. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    5. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    6. Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
    7. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    8. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2022. "Extremile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1579-1586, September.
    9. Xian Zhang & Dingtao Peng, 2022. "Solving constrained nonsmooth group sparse optimization via group Capped- $$\ell _1$$ ℓ 1 relaxation and group smoothing proximal gradient algorithm," Computational Optimization and Applications, Springer, vol. 83(3), pages 801-844, December.
    10. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    11. Alvaro Mendez-Civieta & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2021. "Adaptive sparse group LASSO in quantile regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 547-573, September.
    12. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    13. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    14. Abdallah Mkhadri & Mohamed Ouhourane, 2015. "A group VISA algorithm for variable selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 41-60, March.
    15. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    16. Wei, Fengrong & Zhu, Hongxiao, 2012. "Group coordinate descent algorithms for nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 316-326.
    17. Yang, Yanlin & Hu, Xuemei & Jiang, Huifeng, 2022. "Group penalized logistic regressions predict up and down trends for stock prices," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    18. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    19. Benjamin Poignard, 2020. "Asymptotic theory of the adaptive Sparse Group Lasso," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 297-328, February.
    20. Fan, Zengyan & Lian, Heng, 2018. "Quantile regression for additive coefficient models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 54-64.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:5:d:10.1007_s10260-024-00768-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.