IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i5p664-d1345183.html
   My bibliography  Save this article

Model Selection Path and Construction of Model Confidence Set under High-Dimensional Variables

Author

Listed:
  • Faguang Wen

    (Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
    School of Mathematics, Shandong University, Jinan 250100, China)

  • Jiming Jiang

    (Department of Statistics, University of California, Davis, CA 95616, USA)

  • Yihui Luan

    (Frontiers Science Center for Nonlinear Expectations (Ministry of Education), Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China)

Abstract

Model selection uncertainty has drawn a lot of attention from academics recently because it significantly affects parameter estimation and prediction. Scholars are currently addressing and quantifying uncertainty in model selection by concentrating on model combining and model confidence sets. In this paper, we present a new approach for building model confidence sets, which we call AMac. We provide a theoretical lower bound on the degree of confidence in the model confidence sets that AMac has built. Furthermore, we discuss how the implementation of current model confidence set construction methods becomes difficult when dealing with high-dimensional variables. To address this problem, we suggest building model selection paths (MSP) as a solution. We develop an algorithm for building MSP and show its effectiveness by utilizing the theories of adaptive lasso and lars. We perform an extensive set of simulation experiments to compare the performances of Mac and AMac methods. According to the results, AMac is more stable when there are fluctuations in noise levels. The model confidence sets built by AMac, in particular, achieve coverage rates that are closer to the desired confidence level, especially in the presence of high noise levels. To further confirm that MSP can successfully generate model confidence sets that maintain the given confidence level as the sample size increases, we conduct extensive simulation tests with high-dimensional variables. Ultimately, we hope that the strategies and concepts discussed in this work will improve results in subsequent research on the uncertainty of model selection.

Suggested Citation

  • Faguang Wen & Jiming Jiang & Yihui Luan, 2024. "Model Selection Path and Construction of Model Confidence Set under High-Dimensional Variables," Mathematics, MDPI, vol. 12(5), pages 1-21, February.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:664-:d:1345183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/5/664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/5/664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan, Zheng & Yang, Yuhong, 2005. "Combining Linear Regression Models: When and How?," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1202-1214, December.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    4. Xiaohui Liu & Yuanyuan Li & Jiming Jiang, 2021. "Simple measures of uncertainty for model selection," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 673-692, September.
    5. Yang Li & Yuetian Luo & Davide Ferrari & Xiaonan Hu & Yichen Qin, 2019. "Model confidence bounds for variable selection," Biometrics, The International Biometric Society, vol. 75(2), pages 392-403, June.
    6. Yang Li & Yuetian Luo & Davide Ferrari & Xiaonan Hu & Yichen Qin, 2019. "Rejoinder to Discussions on: Model confidence bounds for variable selection," Biometrics, The International Biometric Society, vol. 75(2), pages 411-413, June.
    7. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    8. Jie Ding & Vahid Tarokh & Yuhong Yang, 2018. "Model Selection Techniques -- An Overview," Papers 1810.09583, arXiv.org.
    9. Chris Chatfield, 1995. "Model Uncertainty, Data Mining and Statistical Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(3), pages 419-444, May.
    10. Yang Y., 2001. "Adaptive Regression by Mixing," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 574-588, June.
    11. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Yichen & Wang, Linna & Li, Yang & Li, Rong, 2023. "Visualization and assessment of model selection uncertainty," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. Aman Ullah & Huansha Wang, 2013. "Parametric and Nonparametric Frequentist Model Selection and Model Averaging," Econometrics, MDPI, vol. 1(2), pages 1-23, September.
    3. Peng, Jingfu & Yang, Yuhong, 2022. "On improvability of model selection by model averaging," Journal of Econometrics, Elsevier, vol. 229(2), pages 246-262.
    4. Liu, Chu-An, 2015. "Distribution theory of the least squares averaging estimator," Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
    5. Ghosh, D. & Yuan, Z., 2009. "An improved model averaging scheme for logistic regression," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1670-1681, September.
    6. Liu, Chu-An, 2012. "A plug-in averaging estimator for regressions with heteroskedastic errors," MPRA Paper 41414, University Library of Munich, Germany.
    7. Gerda Claeskens, 2012. "Focused estimation and model averaging with penalization methods: an overview," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 66(3), pages 272-287, August.
    8. Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
    9. Bastien Marquis & Maarten Jansen, 2022. "Information criteria bias correction for group selection," Statistical Papers, Springer, vol. 63(5), pages 1387-1414, October.
    10. Jie Ding & Vahid Tarokh & Yuhong Yang, 2018. "Model Selection Techniques -- An Overview," Papers 1810.09583, arXiv.org.
    11. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    12. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    13. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    14. G. Aneiros & P. Vieu, 2016. "Sparse nonparametric model for regression with functional covariate," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(4), pages 839-859, October.
    15. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    16. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    17. Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
    18. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    19. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    20. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:5:p:664-:d:1345183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.