IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v299y2022i3p1055-1068.html
   My bibliography  Save this article

A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach

Author

Listed:
  • Lee, In Gyu
  • Yoon, Sang Won
  • Won, Daehan

Abstract

Recently, cost-based feature selection has received significant attention due to its great ability to achieve promising prediction accuracy at a minimum feature acquisition cost. To further improve its predictive and economic performances, this research proposes a cost-effective 1-norm support vector machine with group feature selection as GFS-CESVM1. Its robust counterpart model, GFS-RCESVM1, is also introduced to address the cost uncertainty of features and feature groups because cost variation commonly exists in real-world problems. The proposed models are formulated as Mixed Integer Linear Programming (MILP). To efficiently solve the proposed SVM MILP models, we develop a Branch-Cut-and-Price (BCP) algorithm that considers only a limited number of variables and/or constraints, which thereby leads to rapid convergence to an optimal solution. Various experimental results on benchmark and synthetic datasets demonstrate that GFS-CESVM1 can achieve competitive outcomes by considering not only individual feature evaluation but also group structural information among features. The GFS-RCESVM1 can identify the subset of features that is immune to cost uncertainty and therefore provide feasible and optimal solutions. Furthermore, our BCP algorithm can dominantly outperform the ordinary BB algorithm for finding better objective value and integrality gap within a short period of time.

Suggested Citation

  • Lee, In Gyu & Yoon, Sang Won & Won, Daehan, 2022. "A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1055-1068.
  • Handle: RePEc:eee:ejores:v:299:y:2022:i:3:p:1055-1068
    DOI: 10.1016/j.ejor.2021.12.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721010869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.12.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
    4. Maldonado, Sebastián & Pérez, Juan & Bravo, Cristián, 2017. "Cost-based feature selection for Support Vector Machines: An application in credit scoring," European Journal of Operational Research, Elsevier, vol. 261(2), pages 656-665.
    5. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    6. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    7. Piramuthu, Selwyn, 2004. "Evaluating feature selection methods for learning in data mining applications," European Journal of Operational Research, Elsevier, vol. 156(2), pages 483-494, July.
    8. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Labbé, Martine & Landete, Mercedes & Leal, Marina, 2023. "Dendrograms, minimum spanning trees and feature selection," European Journal of Operational Research, Elsevier, vol. 308(2), pages 555-567.
    2. Noriyoshi Sukegawa & Shohei Suzuki & Yoshiko Ikebe & Yoshito Hirata, 2024. "On Computing Medians of Marked Point Process Data Under Edit Distance," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 178-193, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    3. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    4. Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
    5. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    6. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.
    7. Mínguez, R. & García-Bertrand, R., 2016. "Robust transmission network expansion planning in energy systems: Improving computational performance," European Journal of Operational Research, Elsevier, vol. 248(1), pages 21-32.
    8. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    9. Rafael Epstein & Andres Neely & Andres Weintraub & Fernando Valenzuela & Sergio Hurtado & Guillermo Gonzalez & Alex Beiza & Mauricio Naveas & Florencio Infante & Fernando Alarcon & Gustavo Angulo & Cr, 2012. "A Strategic Empty Container Logistics Optimization in a Major Shipping Company," Interfaces, INFORMS, vol. 42(1), pages 5-16, February.
    10. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    11. Enrico Bartolini & Dominik Goeke & Michael Schneider & Mengdie Ye, 2021. "The Robust Traveling Salesman Problem with Time Windows Under Knapsack-Constrained Travel Time Uncertainty," Transportation Science, INFORMS, vol. 55(2), pages 371-394, March.
    12. Caner, Mehmet, 2023. "Generalized linear models with structured sparsity estimators," Journal of Econometrics, Elsevier, vol. 236(2).
    13. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    14. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    15. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    16. Olga Klopp & Marianna Pensky, 2013. "Sparse High-dimensional Varying Coefficient Model : Non-asymptotic Minimax Study," Working Papers 2013-30, Center for Research in Economics and Statistics.
    17. Jiang, Cuixia & Xiong, Wei & Xu, Qifa & Liu, Yezheng, 2021. "Predicting default of listed companies in mainland China via U-MIDAS Logit model with group lasso penalty," Finance Research Letters, Elsevier, vol. 38(C).
    18. Shunichi Ohmori, 2021. "A Predictive Prescription Using Minimum Volume k -Nearest Neighbor Enclosing Ellipsoid and Robust Optimization," Mathematics, MDPI, vol. 9(2), pages 1-16, January.
    19. Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
    20. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:299:y:2022:i:3:p:1055-1068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.