IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v71y2015i3p731-740.html
   My bibliography  Save this article

The group exponential lasso for bi‐level variable selection

Author

Listed:
  • Patrick Breheny

Abstract

In many applications, covariates possess a grouping structure that can be incorporated into the analysis to select important groups as well as important members of those groups. One important example arises in genetic association studies, where genes may have several variants capable of contributing to disease. An ideal penalized regression approach would select variables by balancing both the direct evidence of a feature's importance as well as the indirect evidence offered by the grouping structure. This work proposes a new approach we call the group exponential lasso (GEL) which features a decay parameter controlling the degree to which feature selection is coupled together within groups. We demonstrate that the GEL has a number of statistical and computational advantages over previously proposed group penalties such as the group lasso, group bridge, and composite MCP. Finally, we apply these methods to the problem of detecting rare variants in a genetic association study.

Suggested Citation

  • Patrick Breheny, 2015. "The group exponential lasso for bi‐level variable selection," Biometrics, The International Biometric Society, vol. 71(3), pages 731-740, September.
  • Handle: RePEc:bla:biomet:v:71:y:2015:i:3:p:731-740
    DOI: 10.1111/biom.12300
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12300
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Jian Huang & Shuange Ma & Huiliang Xie & Cun-Hui Zhang, 2009. "A group bridge approach for variable selection," Biometrika, Biometrika Trust, vol. 96(2), pages 339-355.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mallick, Himel & Yi, Nengjun, 2017. "Bayesian group bridge for bi-level variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 115-133.
    2. Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 0. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 0, pages 1-15.
    3. Yanxin Wang & Qibin Fan & Li Zhu, 2018. "Variable selection and estimation using a continuous approximation to the $$L_0$$ L 0 penalty," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 191-214, February.
    4. Wenyan Zhong & Xuewen Lu & Jingjing Wu, 2021. "Bi-level variable selection in semiparametric transformation models with right-censored data," Computational Statistics, Springer, vol. 36(3), pages 1661-1692, September.
    5. Chengbin Wang & Kuangnan Fang & Chenlu Zheng & Hechao Xu & Zewei Li, 2021. "Credit scoring of micro and small entrepreneurial firms in China," International Entrepreneurship and Management Journal, Springer, vol. 17(1), pages 29-43, March.
    6. Huang Hailin & Shangguan Jizi & Ruan Peifeng & Liang Hua, 2019. "Bi-level feature selection in high dimensional AFT models with applications to a genomic study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-11, October.
    7. Shen, Lijuan & Tang, Yanlin & Tang, Loon Ching, 2021. "Understanding key factors affecting power systems resilience," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    8. Arfan Raheen Afzal & Jing Yang & Xuewen Lu, 2021. "Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters," Computational Statistics, Springer, vol. 36(2), pages 829-855, June.
    9. Bin Luo & Xiaoli Gao, 2022. "A high-dimensional M-estimator framework for bi-level variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 559-579, June.
    10. Liu, Jicai & Si, Yuefeng & Niu, Yong & Zhang, Riquan, 2022. "Projection quantile correlation and its use in high-dimensional grouped variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    11. Qiu, Debin & Ahn, Jeongyoun, 2020. "Grouped variable screening for ultra-high dimensional data for linear model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    12. Sunghoon Kwon & Jeongyoun Ahn & Woncheol Jang & Sangin Lee & Yongdai Kim, 2017. "A doubly sparse approach for group variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 997-1025, October.
    13. Zhang, Xin & Zhao, Junlong, 2024. "Group variable selection via group sparse neural network," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    2. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    3. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    4. Lee, Sangin & Pawitan, Yudi & Lee, Youngjo, 2015. "A random-effect model approach for group variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 147-157.
    5. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    6. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    7. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    8. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Young Joo Yoon & Cheolwoo Park & Erik Hofmeister & Sangwook Kang, 2012. "Group variable selection in cardiopulmonary cerebral resuscitation data for veterinary patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1605-1621, January.
    10. Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
    11. Wenyan Zhong & Xuewen Lu & Jingjing Wu, 2021. "Bi-level variable selection in semiparametric transformation models with right-censored data," Computational Statistics, Springer, vol. 36(3), pages 1661-1692, September.
    12. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    13. Karsten Schweikert, 2022. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 83-104, January.
    14. Behrendt, Simon & Schweikert, Karsten, 2021. "A Note on Adaptive Group Lasso for Structural Break Time Series," Econometrics and Statistics, Elsevier, vol. 17(C), pages 156-172.
    15. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
    16. Karsten Schweikert, 2020. "Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions," Papers 2001.07949, arXiv.org, revised Apr 2021.
    17. Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
    18. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    19. Sunghoon Kwon & Jeongyoun Ahn & Woncheol Jang & Sangin Lee & Yongdai Kim, 2017. "A doubly sparse approach for group variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 997-1025, October.
    20. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:71:y:2015:i:3:p:731-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.