IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2017-003.html
   My bibliography  Save this paper

FRM: A financial risk meter based on penalizing tail events occurrence

Author

Listed:
  • Yu, Lining
  • Härdle, Wolfgang Karl
  • Borke, Lukas
  • Benschop, Thijs

Abstract

In this paper we propose a new measure for systemic risk: the Financial Risk Meter (FRM). This measure is based on the penalization parameter () of a linear quantile lasso regression. The FRM is calculated by taking the average of the penalization parameters over the 100 largest US publicly traded financial institutions. We demonstrate the suitability of this risk measure by comparing the proposed FRM to other measures for systemic risk, such as VIX, SRISK and Google Trends. We find that mutual Granger causality exists between the FRM and these measures, which indicates the validity of the FRM as a systemic risk measure. The implementation of this project is carried out using parallel computing, the codes are published on www.quantlet.de with keyword FRM. The R package RiskAnalytics is another tool with the purpose of integrating and facilitating the research, calculation and analysis methods around the FRM project. The visualization and the up-to-date FRM can be found on http://frm.wiwi.hu-berlin.de.

Suggested Citation

  • Yu, Lining & Härdle, Wolfgang Karl & Borke, Lukas & Benschop, Thijs, 2017. "FRM: A financial risk meter based on penalizing tail events occurrence," SFB 649 Discussion Papers 2017-003, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2017-003
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/162504/1/880325305.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9781107034662 is not listed on IDEAS
    2. Borke, Lukas, 2017. "RiskAnalytics: An R package for real time processing of Nasdaq and Yahoo finance data and parallelized quantile lasso regression methods," SFB 649 Discussion Papers 2017-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    4. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    5. Brooks,Chris, 2014. "Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9781107661455, December.
    6. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    7. Granger, C. W. J., 1988. "Some recent development in a concept of causality," Journal of Econometrics, Elsevier, vol. 39(1-2), pages 199-211.
    8. Yuan, Ming, 2006. "GACV for quantile smoothing splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 813-829, February.
    9. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    10. Kane, Michael & Emerson, John W. & Weston, Stephen, 2013. "Scalable Strategies for Computing with Massive Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i14).
    11. Fan, Yan & Härdle, Wolfgang Karl & Wang, Weining & Zhu, Lixing, 2013. "Composite quantile regression for the single-index model," SFB 649 Discussion Papers 2013-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbonakova, Lenka & Pio Monti, Ricardo & Härdle, Wolfgang Karl, 2018. "Towards the interpretation of time-varying regularization parameters in streaming penalized regression models," IRTG 1792 Discussion Papers 2018-059, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    2. repec:hum:wpaper:sfb649dp2017-006 is not listed on IDEAS
    3. Borke, Lukas, 2017. "RiskAnalytics: An R package for real time processing of Nasdaq and Yahoo finance data and parallelized quantile lasso regression methods," SFB 649 Discussion Papers 2017-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Mihoci, Andrija & Althof, Michael & Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl, 2019. "FRM Financial Risk Meter," IRTG 1792 Discussion Papers 2019-021, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2017-003 is not listed on IDEAS
    2. Lining Yu & Wolfgang Karl Hardle & Lukas Borke & Thijs Benschop, 2020. "An AI approach to measuring financial risk," Papers 2009.13222, arXiv.org.
    3. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    4. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    5. Pami Dua & Nishita Raje & Satyananda Sahoo, 2004. "Interest Rate Modeling and Forecasting in India," Occasional papers 3, Centre for Development Economics, Delhi School of Economics.
    6. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    7. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    8. P. J. Dawson & P. K. Dey, 2002. "Testing for the law of one price: rice market integration in Bangladesh," Journal of International Development, John Wiley & Sons, Ltd., vol. 14(4), pages 473-484.
    9. Glass, Anthony, 2009. "Government expenditure on public order and safety, economic growth and private investment: Empirical evidence from the United States," International Review of Law and Economics, Elsevier, vol. 29(1), pages 29-37, March.
    10. Yu Chen & Jie Hu & Weiping Zhang, 2020. "Too Connected to Fail? Evidence from a Chinese Financial Risk Spillover Network," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(6), pages 78-100, November.
    11. Singh, Tarlok, 2008. "Testing the Saving-Investment correlations in India: An evidence from single-equation and system estimators," Economic Modelling, Elsevier, vol. 25(5), pages 1064-1079, September.
    12. Pami Dua, 2008. "Analysis of Consumers’ Perceptions of Buying Conditions for Houses," The Journal of Real Estate Finance and Economics, Springer, vol. 37(4), pages 335-350, November.
    13. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    14. Tsangyao Chang & Wenshwo Fang & Li-Fang Wen, 2001. "Energy consumption, employment, output, and temporal causality: evidence from Taiwan based on cointegration and error-correction modelling techniques," Applied Economics, Taylor & Francis Journals, vol. 33(8), pages 1045-1056.
    15. Ongono, Patrice, 2009. "Consommation d'énergie et performances économiques au Cameroun [Energy consumption and economic performance in Cameroon]," MPRA Paper 23525, University Library of Munich, Germany.
    16. Zbonakova, L. & Härdle, W.K. & Wang, W., 2016. "Time Varying Quantile Lasso," Working Papers 16/07, Department of Economics, City University London.
    17. Dagher, Leila & El Hariri, Sadika, 2013. "The impact of global oil price shocks on the Lebanese stock market," Energy, Elsevier, vol. 63(C), pages 366-374.
    18. Kyriakos Emmanouilidis & Christos Karpetis, 2020. "The Defense–Growth Nexus: A Review of Time Series Methods and Empirical Results," Defence and Peace Economics, Taylor & Francis Journals, vol. 31(1), pages 86-104, January.
    19. Sullivan HUE & Yannick LUCOTTE & Sessi TOKPAVI, 2018. "Measuring Network Systemic Risk Contributions: A Leave-one-out Approach," LEO Working Papers / DR LEO 2608, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    20. Prof. Neil D. Karunaratne, 2000. "Inflation Targeting Macroeconomic Distortions and the Policy Reaction Function," Discussion Papers Series 269, School of Economics, University of Queensland, Australia.
    21. Wen, Tiange & Wang, Gang-Jin, 2020. "Volatility connectedness in global foreign exchange markets," Journal of Multinational Financial Management, Elsevier, vol. 54(C).
    22. Mushtaq, Khalid & Dawson, P. J., 2002. "Acreage response in Pakistan: a co-integration approach," Agricultural Economics, Blackwell, vol. 27(2), pages 111-121, August.

    More about this item

    Keywords

    Systemic Risk; Quantile Regression; Value at Risk; Lasso; Parallel Computing;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G01 - Financial Economics - - General - - - Financial Crises
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G38 - Financial Economics - - Corporate Finance and Governance - - - Government Policy and Regulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2017-003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.