IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v111y2016i514p696-706.html
   My bibliography  Save this article

Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting

Author

Listed:
  • Irina Gaynanova
  • James G. Booth
  • Martin T. Wells

Abstract

This article considers the problem of sparse estimation of canonical vectors in linear discriminant analysis when p ≫ N. Several methods have been proposed in the literature that estimate one canonical vector in the two-group case. However, G − 1 canonical vectors can be considered if the number of groups is G. In the multi-group context, it is common to estimate canonical vectors in a sequential fashion. Moreover, separate prior estimation of the covariance structure is often required. We propose a novel methodology for direct estimation of canonical vectors. In contrast to existing techniques, the proposed method estimates all canonical vectors at once, performs variable selection across all the vectors and comes with theoretical guarantees on the variable selection and classification consistency. First, we highlight the fact that in the N > p setting the canonical vectors can be expressed in a closed form up to an orthogonal transformation. Secondly, we propose an extension of this form to the p ≫ N setting and achieve feature selection by using a group penalty. The resulting optimization problem is convex and can be solved using a block-coordinate descent algorithm. The practical performance of the method is evaluated through simulation studies as well as real data applications. Supplementary materials for this article are available online.

Suggested Citation

  • Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
  • Handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:696-706
    DOI: 10.1080/01621459.2015.1034318
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2015.1034318
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2015.1034318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Ping & Brock, Guy N. & Parrish, Rudolph S., 2009. "Modified linear discriminant analysis approaches for classification of high-dimensional microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1674-1687, March.
    2. Hengjian Cui & Runze Li & Wei Zhong, 2015. "Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 630-641, June.
    3. Rukhin, Andrew L., 1992. "Generalized Bayes estimators of a normal discriminant function," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 154-162, April.
    4. Jianqing Fan & Yang Feng & Xin Tong, 2012. "A road to classification in high dimensional space: the regularized optimal affine discriminant," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 745-771, September.
    5. Kevin Pethe & Patricia C. Sequeira & Sanjay Agarwalla & Kyu Rhee & Kelli Kuhen & Wai Yee Phong & Viral Patel & David Beer & John R. Walker & Jeyaraj Duraiswamy & Jan Jiricek & Thomas H. Keller & Arnab, 2010. "A chemical genetic screen in Mycobacterium tuberculosis identifies carbon-source-dependent growth inhibitors devoid of in vivo efficacy," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    6. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    7. Qing Mai & Hui Zou & Ming Yuan, 2012. "A direct approach to sparse discriminant analysis in ultra-high dimensions," Biometrika, Biometrika Trust, vol. 99(1), pages 29-42.
    8. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    9. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youssef Anzarmou & Abdallah Mkhadri & Karim Oualkacha, 2023. "Sparse overlapped linear discriminant analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 388-417, March.
    2. Yunfeng Zhang & Irina Gaynanova, 2022. "Joint association and classification analysis of multi‐view data," Biometrics, The International Biometric Society, vol. 78(4), pages 1614-1625, December.
    3. Sandra E. Safo & Eun Jeong Min & Lillian Haine, 2022. "Sparse linear discriminant analysis for multiview structured data," Biometrics, The International Biometric Society, vol. 78(2), pages 612-623, June.
    4. Gaynanova, Irina & Wang, Tianying, 2019. "Sparse quadratic classification rules via linear dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 278-299.
    5. Oda, Ryoya & Suzuki, Yuya & Yanagihara, Hirokazu & Fujikoshi, Yasunori, 2020. "A consistent variable selection method in high-dimensional canonical discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
    2. Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Gaynanova, Irina & Wang, Tianying, 2019. "Sparse quadratic classification rules via linear dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 278-299.
    4. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    5. Brendan P. W. Ames & Mingyi Hong, 2016. "Alternating direction method of multipliers for penalized zero-variance discriminant analysis," Computational Optimization and Applications, Springer, vol. 64(3), pages 725-754, July.
    6. Sheng, Ying & Wang, Qihua, 2019. "Simultaneous variable selection and class fusion with penalized distance criterion based classifiers," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 138-152.
    7. Makoto Aoshima & Kazuyoshi Yata, 2019. "High-Dimensional Quadratic Classifiers in Non-sparse Settings," Methodology and Computing in Applied Probability, Springer, vol. 21(3), pages 663-682, September.
    8. Caner, Mehmet, 2023. "Generalized linear models with structured sparsity estimators," Journal of Econometrics, Elsevier, vol. 236(2).
    9. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    10. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    11. Oda, Ryoya & Suzuki, Yuya & Yanagihara, Hirokazu & Fujikoshi, Yasunori, 2020. "A consistent variable selection method in high-dimensional canonical discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    12. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    13. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    14. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    15. Dawit G. Tadesse & Mark Carpenter, 2019. "A method for selecting the relevant dimensions for high-dimensional classification in singular vector spaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 405-426, June.
    16. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    17. Khai X. Chiong & Hyungsik Roger Moon, 2017. "Estimation of Graphical Models using the $L_{1,2}$ Norm," Papers 1709.10038, arXiv.org, revised Oct 2017.
    18. A. Poterie & J.-F. Dupuy & V. Monbet & L. Rouvière, 2019. "Classification tree algorithm for grouped variables," Computational Statistics, Springer, vol. 34(4), pages 1613-1648, December.
    19. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
    20. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:111:y:2016:i:514:p:696-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.