IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v169y2022ics0167947321002486.html
   My bibliography  Save this article

Multiclass-penalized logistic regression

Author

Listed:
  • Nibbering, Didier
  • Hastie, Trevor J.

Abstract

A multinomial logistic regression model that penalizes the number of class-specific parameters is proposed. The number of parameters in a standard multinomial regression model increases linearly with the number of classes and number of explanatory variables. The multiclass-penalized regression model clusters parameters together by penalizing the differences between class-specific parameter vectors, instead of penalizing the number of explanatory variables. The model provides interpretable parameter estimates, even in settings with many classes. An algorithm for maximum likelihood estimation in the multiclass-penalized regression model is discussed. Applications to simulated and real data show in- and out-of-sample improvements in performance relative to a standard multinomial regression model.

Suggested Citation

  • Nibbering, Didier & Hastie, Trevor J., 2022. "Multiclass-penalized logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002486
    DOI: 10.1016/j.csda.2021.107414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947321002486
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2021.107414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    3. Didier Nibbering, 2019. "A High-dimensional Multinomial Choice Model," Monash Econometrics and Business Statistics Working Papers 19/19, Monash University, Department of Econometrics and Business Statistics.
    4. Cramer, J. S. & Ridder, G., 1991. "Pooling states in the multinomial logit model," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 267-272, February.
    5. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    6. Carson, Richard T. & Louviere, Jordan J., 2014. "Statistical properties of consideration sets," Journal of choice modelling, Elsevier, vol. 13(C), pages 37-48.
    7. Elaine Zanutto & Eric Bradlow, 2006. "Data pruning in consumer choice models," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 267-287, September.
    8. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron J. Molstad & Keshav Motwani, 2023. "Multiresolution categorical regression for interpretable cell‐type annotation," Biometrics, The International Biometric Society, vol. 79(4), pages 3485-3496, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Didier Nibbering, 2024. "A high‐dimensional multinomial logit model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 481-497, April.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    4. Didier Nibbering, 2023. "A High-dimensional Multinomial Logit Model," Monash Econometrics and Business Statistics Working Papers 19/23, Monash University, Department of Econometrics and Business Statistics.
    5. Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
    6. Qing Wang & Dan Zhao, 2019. "Penalization methods with group-wise sparsity: econometric applications to eBay Motors online auctions," Empirical Economics, Springer, vol. 57(2), pages 683-704, August.
    7. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    8. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    9. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
    10. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    11. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    12. Murat Genç & M. Revan Özkale, 2021. "Usage of the GO estimator in high dimensional linear models," Computational Statistics, Springer, vol. 36(1), pages 217-239, March.
    13. Wei, Fengrong & Zhu, Hongxiao, 2012. "Group coordinate descent algorithms for nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 316-326.
    14. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    15. Dindaroglu, Burak & Ertac, Seda, 2024. "An empirical study of sequential offer bargaining during the Festival of Sacrifice," Journal of Economic Psychology, Elsevier, vol. 101(C).
    16. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
    17. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    18. Oskar Allerbo & Rebecka Jörnsten, 2022. "Flexible, non-parametric modeling using regularized neural networks," Computational Statistics, Springer, vol. 37(4), pages 2029-2047, September.
    19. Yi Tan & Prakash P. Shenoy & Ben Sherwood & Catherine Shenoy & Melinda Gaddy & Mary E. Oehlert, 2024. "Bayesian Network Models for PTSD Screening in Veterans," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 495-509, March.
    20. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:169:y:2022:i:c:s0167947321002486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.