IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v15y2021i3d10.1007_s11634-020-00413-8.html
   My bibliography  Save this article

Adaptive sparse group LASSO in quantile regression

Author

Listed:
  • Alvaro Mendez-Civieta

    (University Carlos III of Madrid
    uc3m-Santander Big Data Institute)

  • M. Carmen Aguilera-Morillo

    (uc3m-Santander Big Data Institute
    Universitat Politecnica de Valencia)

  • Rosa E. Lillo

    (University Carlos III of Madrid
    uc3m-Santander Big Data Institute)

Abstract

This paper studies the introduction of sparse group LASSO (SGL) to the quantile regression framework. Additionally, a more flexible version, an adaptive SGL is proposed based on the adaptive idea, this is, the usage of adaptive weights in the penalization. Adaptive estimators are usually focused on the study of the oracle property under asymptotic and double asymptotic frameworks. A key step on the demonstration of this property is to consider adaptive weights based on a initial $$\sqrt{n}$$ n -consistent estimator. In practice this implies the usage of a non penalized estimator that limits the adaptive solutions to low dimensional scenarios. In this work, several solutions, based on dimension reduction techniques PCA and PLS, are studied for the calculation of these weights in high dimensional frameworks. The benefits of this proposal are studied both in synthetic and real datasets.

Suggested Citation

  • Alvaro Mendez-Civieta & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2021. "Adaptive sparse group LASSO in quantile regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 547-573, September.
  • Handle: RePEc:spr:advdac:v:15:y:2021:i:3:d:10.1007_s11634-020-00413-8
    DOI: 10.1007/s11634-020-00413-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-020-00413-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-020-00413-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Zakariya Yahya Algamal & Muhammad Hisyam Lee, 2019. "A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 753-771, September.
    3. Kim, Yongdai & Choi, Hosik & Oh, Hee-Seok, 2008. "Smoothly Clipped Absolute Deviation on High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1665-1673.
    4. Weihua Zhao & Riquan Zhang & Jicai Liu, 2014. "Sparse group variable selection based on quantile hierarchical Lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1658-1677, August.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    7. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    8. Gabriela Ciuperca, 2019. "Adaptive group LASSO selection in quantile models," Statistical Papers, Springer, vol. 60(1), pages 173-197, February.
    9. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    10. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguilera Morillo, María del Carmen, 2019. "Quantile regression : a penalization approach," DES - Working Papers. Statistics and Econometrics. WS 28428, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Fan, Zengyan & Lian, Heng, 2018. "Quantile regression for additive coefficient models in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 164(C), pages 54-64.
    3. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    4. Kean Ming Tan & Lan Wang & Wen‐Xin Zhou, 2022. "High‐dimensional quantile regression: Convolution smoothing and concave regularization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 205-233, February.
    5. Mohamed Ouhourane & Yi Yang & Andréa L. Benedet & Karim Oualkacha, 2022. "Group penalized quantile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 495-529, September.
    6. Tang, Yanlin & Wang, Huixia Judy & Zhu, Zhongyi, 2013. "Variable selection in quantile varying coefficient models with longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 435-449.
    7. Fan, Rui & Lee, Ji Hyung & Shin, Youngki, 2023. "Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach," Journal of Econometrics, Elsevier, vol. 237(2).
    8. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    9. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    10. Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016. "The lasso for high dimensional regression with a possible change point," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
    11. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    12. Jeon, Jong-June & Kwon, Sunghoon & Choi, Hosik, 2017. "Homogeneity detection for the high-dimensional generalized linear model," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 61-74.
    13. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    14. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    15. Xianwen Ding & Zhihuang Yang, 2024. "Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates," Mathematics, MDPI, vol. 12(20), pages 1-23, October.
    16. Xiang Zhang & Yichao Wu & Lan Wang & Runze Li, 2016. "Variable selection for support vector machines in moderately high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 53-76, January.
    17. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    18. Guo, Xiao & Zhang, Hai & Wang, Yao & Wu, Jiang-Lun, 2015. "Model selection and estimation in high dimensional regression models with group SCAD," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 86-92.
    19. Zhaoping Hong & Yuao Hu & Heng Lian, 2013. "Variable selection for high-dimensional varying coefficient partially linear models via nonconcave penalty," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(7), pages 887-908, October.
    20. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:15:y:2021:i:3:d:10.1007_s11634-020-00413-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.