IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v78y2024ics0927539824000641.html
   My bibliography  Save this article

Influencer detection meets network autoregression — Influential regions in the bitcoin blockchain

Author

Listed:
  • Trimborn, Simon
  • Peng, Hanqiu
  • Chen, Ying

Abstract

Known as an active global virtual money network, the Bitcoin blockchain, with millions of accounts, has played a continually increasingly important role in fund transition, digital payment, and hedging. We propose a method to Detect Influencers in Network AutoRegressive models (DINAR) via sparse-group regularization to detect regions influencing others across borders. For a granular analysis, we analyse whether the transaction size plays a role in the dynamics of the cross-border transactions in the network. With two-layer sparsity, DINAR enables discovering (1) the active regions with influential impact on the global digital money network and (2) whether changes in the size of the transaction affect the dynamic evolution of Bitcoin transactions. In the analysis of real data of the Bitcoin blockchain from Feb 2012 to December 2021, we find that influence from certain regions is linked to the economic need to use BTC, such as to circumvent sanctions, avoid high inflation, and to carry out transactions through off-shore markets. The effects are robust to different groupings, evaluation periods, and choices of regularization parameters.

Suggested Citation

  • Trimborn, Simon & Peng, Hanqiu & Chen, Ying, 2024. "Influencer detection meets network autoregression — Influential regions in the bitcoin blockchain," Journal of Empirical Finance, Elsevier, vol. 78(C).
  • Handle: RePEc:eee:empfin:v:78:y:2024:i:c:s0927539824000641
    DOI: 10.1016/j.jempfin.2024.101529
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539824000641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2024.101529?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    2. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    3. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    4. Pesaran M.H. & Schuermann T. & Weiner S.M., 2004. "Modeling Regional Interdependencies Using a Global Error-Correcting Macroeconometric Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 129-162, April.
    5. Christian M Hafner, 2020. "Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 233-249.
    6. John M. Griffin & Amin Shams, 2020. "Is Bitcoin Really Untethered?," Journal of Finance, American Finance Association, vol. 75(4), pages 1913-1964, August.
    7. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Bayesian Graphical Models for STructural Vector Autoregressive Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 357-386, March.
    8. Igor Makarov & Antoinette Schoar, 2021. "Blockchain Analysis of the Bitcoin Market," NBER Working Papers 29396, National Bureau of Economic Research, Inc.
    9. Wenjun Feng & Yiming Wang & Zhengjun Zhang, 2018. "Can cryptocurrencies be a safe haven: a tail risk perspective analysis," Applied Economics, Taylor & Francis Journals, vol. 50(44), pages 4745-4762, September.
    10. Matthias Lischke & Benjamin Fabian, 2016. "Analyzing the Bitcoin Network: The First Four Years," Future Internet, MDPI, vol. 8(1), pages 1-40, March.
    11. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    12. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    13. Sabah, Nasim, 2020. "Cryptocurrency accepting venues, investor attention, and volatility," Finance Research Letters, Elsevier, vol. 36(C).
    14. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    15. Makarov, Igor & Schoar, Antoinette, 2021. "Blockchain analysis of the Bitcoin market," LSE Research Online Documents on Economics 118897, London School of Economics and Political Science, LSE Library.
    16. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    17. Sean Foley & Jonathan R Karlsen & Tālis J Putniņš, 2019. "Sex, Drugs, and Bitcoin: How Much Illegal Activity Is Financed through Cryptocurrencies?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1798-1853.
    18. Song, Song & Bickel, Peter J., 2011. "Large vector auto regressions," SFB 649 Discussion Papers 2011-048, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    20. Jianhua Guo & Jianchang Hu & Bing-Yi Jing & Zhen Zhang, 2016. "Spline-Lasso in High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 288-297, March.
    21. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    22. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    23. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    24. Andreas Hackethal & Tobin Hanspal & Dominique M Lammer & Kevin Rink, 2022. "The Characteristics and Portfolio Behavior of Bitcoin Investors: Evidence from Indirect Cryptocurrency Investments [The investor in structured retail products: advice driven or gambling oriented]," Review of Finance, European Finance Association, vol. 26(4), pages 855-898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kexin Zhang & Simon Trimborn, 2024. "Influential assets in Large-Scale Vector AutoRegressive Models," Tinbergen Institute Discussion Papers 24-080/III, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kexin Zhang & Simon Trimborn, 2024. "Influential assets in Large-Scale Vector AutoRegressive Models," Tinbergen Institute Discussion Papers 24-080/III, Tinbergen Institute.
    2. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    3. Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Forecasting, MDPI, vol. 3(2), pages 1-44, May.
    4. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
    5. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    6. Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
    7. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    8. Karau, Sören, 2023. "Monetary policy and Bitcoin," Journal of International Money and Finance, Elsevier, vol. 137(C).
    9. Kascha, Christian & Trenkler, Carsten, 2015. "Forecasting VARs, model selection, and shrinkage," Working Papers 15-07, University of Mannheim, Department of Economics.
    10. Siwei Xia & Yuehan Yang & Hu Yang, 2022. "Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 255-277, March.
    11. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    12. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    13. Gelper, Sarah & Wilms, Ines & Croux, Christophe, 2016. "Identifying Demand Effects in a Large Network of Product Categories," Journal of Retailing, Elsevier, vol. 92(1), pages 25-39.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Jia, Yuecheng & Wu, Yangru & Yan, Shu & Liu, Yuzheng, 2023. "A seesaw effect in the cryptocurrency market: Understanding the return cross predictability of cryptocurrencies," Journal of Empirical Finance, Elsevier, vol. 74(C).
    16. Gefang, Deborah, 2014. "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage," International Journal of Forecasting, Elsevier, vol. 30(1), pages 1-11.
    17. Krampe, J. & Paparoditis, E. & Trenkler, C., 2023. "Structural inference in sparse high-dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 234(1), pages 276-300.
    18. Karau, Sören, 2021. "Monetary policy and Bitcoin," Discussion Papers 41/2021, Deutsche Bundesbank.
    19. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    20. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.

    More about this item

    Keywords

    Bitcoin blockchain; Network dynamics; Two-layer sparsity;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:78:y:2024:i:c:s0927539824000641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.