IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v77y2024ics092753982400032x.html
   My bibliography  Save this article

Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach

Author

Listed:
  • Sun, Chuanping

Abstract

This paper investigates high-dimensional factor models for cross-sectional asset returns, with a specific focus on robust estimation in the presence of (highly) correlated factors. Factor correlations can significantly compromise the robustness and credibility of commonly employed analytical methods. To address this, we utilize the stochastic discount factor (SDF) and integrate it with a recently developed Machine Learning methodology (Figueiredo and Nowak, 2016). This novel approach allows us to select factors while accounting for factor correlations and to disentangle correlated factors without imposing rigid assumptions. Our empirical findings consistently highlight the paramount role of the ‘market’ factor in driving cross-sectional asset returns. In contrast, other benchmarks, including the LASSO, the Elastic-Net, and the Fama–MacBeth regression, are adversely impacted by factor correlations, rendering the ‘market’ factor redundant. Additionally, our findings underscore the importance of ‘profitability’, ‘momentum’, and ‘liquidity’-related factors in driving cross-sectional asset returns.

Suggested Citation

  • Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
  • Handle: RePEc:eee:empfin:v:77:y:2024:i:c:s092753982400032x
    DOI: 10.1016/j.jempfin.2024.101497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092753982400032X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2024.101497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Factor investing; LASSO; Firm characteristics; Stochastic discount factor; Factor zoo;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:77:y:2024:i:c:s092753982400032x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.