IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v126y2018icp92-111.html
   My bibliography  Save this article

Bayesian quantile regression using the skew exponential power distribution

Author

Listed:
  • Bernardi, Mauro
  • Bottone, Marco
  • Petrella, Lea

Abstract

Traditional Bayesian quantile regression relies on the Asymmetric Laplace (AL) distribution due primarily to its satisfactory empirical and theoretical performances. However, the AL displays medium tails and it is not suitable for data characterized by strong deviations from the Gaussian hypothesis. An extension of the AL Bayesian quantile regression framework is proposed to account for fat tails using the Skew Exponential Power (SEP) distribution. Linear and Additive Models (AM) with penalized splines are considered to show the flexibility of the SEP in the Bayesian quantile regression context. Lasso priors are used in both cases to account for the problem of shrinking parameters when the parameters space becomes wide while Bayesian inference is implemented using a new adaptive Metropolis within Gibbs algorithm. Empirical evidence of the statistical properties of the proposed models is provided through several examples based on both simulated and real datasets.

Suggested Citation

  • Bernardi, Mauro & Bottone, Marco & Petrella, Lea, 2018. "Bayesian quantile regression using the skew exponential power distribution," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 92-111.
  • Handle: RePEc:eee:csdana:v:126:y:2018:i:c:p:92-111
    DOI: 10.1016/j.csda.2018.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318300975
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    2. Raul A. Barreto & Anthony W. Hughes, 2004. "Under Performers and Over Achievers: A Quantile Regression Analysis of Growth," The Economic Record, The Economic Society of Australia, vol. 80(248), pages 17-35, March.
    3. D. G. T. Denison & B. K. Mallick & A. F. M. Smith, 1998. "Automatic Bayesian curve fitting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 333-350.
    4. Rahim Alhamzawi & Keming Yu, 2012. "Variable selection in quantile regression via Gibbs sampling," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 799-813, August.
    5. Duncan Lee & Tereza Neocleous, 2010. "Bayesian quantile regression for count data with application to environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 905-920, November.
    6. Mello, Marcelo & Perrelli, Roberto, 2003. "Growth equations: a quantile regression exploration," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(4), pages 643-667.
    7. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    8. R. Alhamzawi & K. Yu & D. F. Benoit, 2011. "Bayesian adaptive Lasso quantile regression," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/728, Ghent University, Faculty of Economics and Business Administration.
    9. Robert J. Barro, 1991. "Economic Growth in a Cross Section of Countries," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(2), pages 407-443.
    10. Choy, S. T. Boris & Walker, Stephen G., 2003. "The extended exponential power distribution and Bayesian robustness," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 227-232, November.
    11. Marcio Laurini, 2007. "A note on the use of quantile regression in beta convergence analysis," Economics Bulletin, AccessEcon, vol. 3(52), pages 1-8.
    12. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    13. Chris Hans, 2009. "Bayesian lasso regression," Biometrika, Biometrika Trust, vol. 96(4), pages 835-845.
    14. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, January.
    15. S. T. Boris Choy & Adrian F. M. Smith, 1997. "On Robust Analysis of a Normal Location Parameter," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 463-474.
    16. Brezger, Andreas & Steiner, Winfried J., 2008. "Monotonic Regression Based on Bayesian PSplines: An Application to Estimating Price Response Functions From Store-Level Scanner Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 90-104, January.
    17. Yue, Yu Ryan & Rue, Håvard, 2011. "Bayesian inference for additive mixed quantile regression models," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 84-96, January.
    18. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    19. Yu, Keming & Stander, Julian, 2007. "Bayesian analysis of a Tobit quantile regression model," Journal of Econometrics, Elsevier, vol. 137(1), pages 260-276, March.
    20. Reich, Brian J. & Fuentes, Montserrat & Dunson, David B., 2011. "Bayesian Spatial Quantile Regression," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 6-20.
    21. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    22. Andreas Mayr & Nora Fenske & Benjamin Hofner & Thomas Kneib & Matthias Schmid, 2012. "Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 403-427, May.
    23. Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
    24. Harrison, David Jr. & Rubinfeld, Daniel L., 1978. "Hedonic housing prices and the demand for clean air," Journal of Environmental Economics and Management, Elsevier, vol. 5(1), pages 81-102, March.
    25. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    26. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    27. Cristina Mollica & Lea Petrella, 2017. "Bayesian binary quantile regression for the analysis of Bachelor-to-Master transition," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2791-2812, November.
    28. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    29. Dries F. Benoit & Dirk Van den Poel, 2012. "Binary quantile regression: a Bayesian approach based on the asymmetric Laplace distribution," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1174-1188, November.
    30. Bernardi, Mauro & Bignozzi, Valeria & Petrella, Lea, 2017. "On the Lp-quantiles for the Student t distribution," Statistics & Probability Letters, Elsevier, vol. 128(C), pages 77-83.
    31. Aigner, D J & Amemiya, Takeshi & Poirier, Dale J, 1976. "On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 17(2), pages 377-396, June.
    32. Thompson, Paul & Cai, Yuzhi & Moyeed, Rana & Reeve, Dominic & Stander, Julian, 2010. "Bayesian nonparametric quantile regression using splines," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1138-1150, April.
    33. Athanasios Kottas & Milovan Krnjajić, 2009. "Bayesian Semiparametric Modelling in Quantile Regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 297-319, June.
    34. Thomas Kneib & Susanne Konrath & Ludwig Fahrmeir, 2011. "High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(1), pages 51-70, January.
    35. Brezger, Andreas & Lang, Stefan, 2006. "Generalized structured additive regression based on Bayesian P-splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 967-991, February.
    36. Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
    37. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    38. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    39. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    40. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    3. Fabrizio Leisen & Luca Rossini & Cristiano Villa, 2020. "Loss-based approach to two-piece location-scale distributions with applications to dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 309-333, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunwen Yang & Huixia Judy Wang & Xuming He, 2016. "Posterior Inference in Bayesian Quantile Regression with Asymmetric Laplace Likelihood," International Statistical Review, International Statistical Institute, vol. 84(3), pages 327-344, December.
    2. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    3. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    4. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    5. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    6. Bhattacharya, Indrabati & Ghosal, Subhashis, 2021. "Bayesian multivariate quantile regression using Dependent Dirichlet Process prior," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    7. Dries Benoit & Rahim Alhamzawi & Keming Yu, 2013. "Bayesian lasso binary quantile regression," Computational Statistics, Springer, vol. 28(6), pages 2861-2873, December.
    8. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    9. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    10. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2016. "Do maternal health problems influence child's worrying status? Evidence from the British Cohort Study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 2941-2955, December.
    11. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    12. Henry R. Scharf & Xinyi Lu & Perry J. Williams & Mevin B. Hooten, 2022. "Constructing Flexible, Identifiable and Interpretable Statistical Models for Binary Data," International Statistical Review, International Statistical Institute, vol. 90(2), pages 328-345, August.
    13. Elisabeth Waldmann & Thomas Kneib & Yu Ryan Yu & Stefan Lang, 2012. "Bayesian semiparametric additive quantile regression," Working Papers 2012-06, Faculty of Economics and Statistics, Universität Innsbruck.
    14. Jesus regstdpo-Cuaresma & Neil Foster & Robert Stehrer, 2011. "Determinants of Regional Economic Growth by Quantile," Regional Studies, Taylor & Francis Journals, vol. 45(6), pages 809-826.
    15. Vahid Nassiri & Ignace Loris, 2014. "An efficient algorithm for structured sparse quantile regression," Computational Statistics, Springer, vol. 29(5), pages 1321-1343, October.
    16. Tian, Yuzhu & Song, Xinyuan, 2020. "Bayesian bridge-randomized penalized quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    17. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    18. Alhamzawi, Rahim & Yu, Keming, 2013. "Conjugate priors and variable selection for Bayesian quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 209-219.
    19. Oh, Man-Suk & Park, Eun Sug & So, Beong-Soo, 2016. "Bayesian variable selection in binary quantile regression," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 177-181.
    20. Jayabrata Biswas & Kiranmoy Das, 2021. "A Bayesian quantile regression approach to multivariate semi-continuous longitudinal data," Computational Statistics, Springer, vol. 36(1), pages 241-260, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:126:y:2018:i:c:p:92-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.