IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v27y2022i2d10.1007_s13253-021-00469-9.html
   My bibliography  Save this article

An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails

Author

Listed:
  • M. Carvalho

    (University of Edinburgh)

  • S. Pereira

    (Universidade de Lisboa)

  • P. Pereira

    (EST Setúbal/IPS and CEAUL)

  • P. Zea Bermudez

    (Universidade de Lisboa)

Abstract

We introduce a novel regression model for the conditional left and right tail of a possibly heavy-tailed response. The proposed model can be used to learn the effect of covariates on an extreme value setting via a Lasso-type specification based on a Lagrangian restriction. Our model can be used to track if some covariates are significant for the lower values, but not for the (right) tail—and vice versa; in addition to this, the proposed model bypasses the need for conditional threshold selection in an extreme value theory framework. We assess the finite-sample performance of the proposed methods through a simulation study that reveals that our method recovers the true conditional distribution over a variety of simulation scenarios, along with being accurate on variable selection. Rainfall data are used to showcase how the proposed method can learn to distinguish between key drivers of moderate rainfall, against those of extreme rainfall. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
  • Handle: RePEc:spr:jagbes:v:27:y:2022:i:2:d:10.1007_s13253-021-00469-9
    DOI: 10.1007/s13253-021-00469-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-021-00469-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-021-00469-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    2. Victor Chernozhukov, 2005. "Extremal quantile regression," Papers math/0505639, arXiv.org.
    3. Sonia Petrone & Larry Wasserman, 2002. "Consistency of Bernstein polynomial posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 79-100, January.
    4. P. Zea Bermudez & M. Turkman, 2003. "Bayesian approach to parameter estimation of the generalized pareto distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 259-277, June.
    5. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    6. Cristiano Villa, 2017. "Bayesian estimation of the threshold of a generalised pareto distribution for heavy-tailed observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 95-118, March.
    7. MacDonald, A. & Scarrott, C.J. & Lee, D. & Darlow, B. & Reale, M. & Russell, G., 2011. "A flexible extreme value mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2137-2157, June.
    8. V. Chavez‐Demoulin & A. C. Davison, 2005. "Generalized additive modelling of sample extremes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 207-222, January.
    9. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    10. Groll, Andreas & Hambuckers, Julien & Kneib, Thomas & Umlauf, Nikolaus, 2019. "LASSO-type penalization in the framework of generalized additive models for location, scale and shape," Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 59-73.
    11. Michael L. Stein, 2021. "A parametric model for distributions with flexible behaviour in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    12. Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.
    13. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
    14. Cabras, Stefano & Castellanos, María Eugenia, 2011. "A Bayesian Approach for Estimating Extreme Quantiles Under a Semiparametric Mixture Model," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 87-106, May.
    15. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    16. Michael L. Stein, 2021. "A parametric model for distributions with flexible behavior in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    17. Wang, Hansheng & Tsai, Chih-Ling, 2009. "Tail Index Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1233-1240.
    18. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philémon Gamet & Jonathan Jalbert, 2022. "A flexible extended generalized Pareto distribution for tail estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    2. Federica Stolf & Antonio Canale, 2023. "A hierarchical Bayesian non‐asymptotic extreme value model for spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    3. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    4. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
    2. Kaito Shimamura & Shuichi Kawano, 2021. "Bayesian sparse convex clustering via global-local shrinkage priors," Computational Statistics, Springer, vol. 36(4), pages 2671-2699, December.
    3. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    4. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    5. Debamita Kundu & Riten Mitra & Jeremy T. Gaskins, 2021. "Bayesian variable selection for multioutcome models through shared shrinkage," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 295-320, March.
    6. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    7. Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
    8. Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
    9. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    10. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
    11. Philémon Gamet & Jonathan Jalbert, 2022. "A flexible extended generalized Pareto distribution for tail estimation," Environmetrics, John Wiley & Sons, Ltd., vol. 33(6), September.
    12. Xueying Tang & Xiaofan Xu & Malay Ghosh & Prasenjit Ghosh, 2018. "Bayesian Variable Selection and Estimation Based on Global-Local Shrinkage Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 215-246, August.
    13. Cristiano Villa, 2017. "Bayesian estimation of the threshold of a generalised pareto distribution for heavy-tailed observations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 95-118, March.
    14. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim, 2021. "On Bayesian approach to composite Pareto models," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-22, September.
    15. Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    16. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    17. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    18. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    19. Uddin, Md Nazir & Gaskins, Jeremy T., 2023. "Shared Bayesian variable shrinkage in multinomial logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    20. Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:27:y:2022:i:2:d:10.1007_s13253-021-00469-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.