IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v144y2020ics0167947319302397.html
   My bibliography  Save this article

Efficient computation for differential network analysis with applications to quadratic discriminant analysis

Author

Listed:
  • Pan, Yuqing
  • Mai, Qing

Abstract

Differential network analysis is an important statistical problem with wide applications. Many statisticians focus on binary problems and propose to perform such analysis by obtaining sparse estimates of the difference between precision matrices. These methods are supported by excellent theoretical properties and practical performance. However, efficient computation for these methods remains a challenging problem. A novel algorithm referred to as the SMORE algorithm is proposed for differential network analysis. The SMORE algorithm has low storage cost and high computation speed, especially in the presence of strong sparsity. In the meantime, the SMORE algorithm provides a unified framework for binary and multiple network problems. In addition, the SMORE algorithm can be applied in high-dimensional quadratic discriminant analysis problems as well, leading to a new approach for multiclass high-dimensional quadratic discriminant analysis. Numerical studies confirm the stability and the efficiency of the proposed SMORE algorithm in both differential network analysis and quadratic discriminant analysis.

Suggested Citation

  • Pan, Yuqing & Mai, Qing, 2020. "Efficient computation for differential network analysis with applications to quadratic discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302397
    DOI: 10.1016/j.csda.2019.106884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319302397
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.106884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Sihai Dave Zhao & T. Tony Cai & Hongzhe Li, 2014. "Direct estimation of differential networks," Biometrika, Biometrika Trust, vol. 101(2), pages 253-268.
    3. Yichao Wu, 2011. "An ordinary differential equation-based solution path algorithm," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 185-199.
    4. Yuqing Pan & Qing Mai & Xin Zhang, 2019. "Covariate-Adjusted Tensor Classification in High Dimensions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1305-1319, July.
    5. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    6. Jian Guo & Elizaveta Levina & George Michailidis & Ji Zhu, 2011. "Joint estimation of multiple graphical models," Biometrika, Biometrika Trust, vol. 98(1), pages 1-15.
    7. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    9. Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
    10. Hua Zhou & Yichao Wu, 2014. "A Generic Path Algorithm for Regularized Statistical Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 686-699, June.
    11. Qing Mai & Hui Zou & Ming Yuan, 2012. "A direct approach to sparse discriminant analysis in ultra-high dimensions," Biometrika, Biometrika Trust, vol. 99(1), pages 29-42.
    12. Wenjing Wang & Xin Zhang & Lexin Li, 2019. "Common reducing subspace model and network alternation analysis," Biometrics, The International Biometric Society, vol. 75(4), pages 1109-1120, December.
    13. Teng Zhang & Hui Zou, 2014. "Sparse precision matrix estimation via lasso penalized D-trace loss," Biometrika, Biometrika Trust, vol. 101(1), pages 103-120.
    14. Robert J. Boik, 2002. "Spectral models for covariance matrices," Biometrika, Biometrika Trust, vol. 89(1), pages 159-182, March.
    15. Jianqing Fan & Yang Feng & Xin Tong, 2012. "A road to classification in high dimensional space: the regularized optimal affine discriminant," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 745-771, September.
    16. Ming Yuan & Yi Lin, 2007. "Model selection and estimation in the Gaussian graphical model," Biometrika, Biometrika Trust, vol. 94(1), pages 19-35.
    17. R. Dennis Cook & Liliana Forzani, 2008. "Covariance reducing models: An alternative to spectral modelling of covariance matrices," Biometrika, Biometrika Trust, vol. 95(4), pages 799-812.
    18. Huili Yuan & Ruibin Xi & Chong Chen & Minghua Deng, 2017. "Differential network analysis via lasso penalized D-trace loss," Biometrika, Biometrika Trust, vol. 104(4), pages 755-770.
    19. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    20. Peirong Xu & Ji Zhu & Lixing Zhu & Yi Li, 2015. "Covariance-enhanced discriminant analysis," Biometrika, Biometrika Trust, vol. 102(1), pages 33-45.
    21. Cai, Tony & Liu, Weidong & Luo, Xi, 2011. "A Constrained â„“1 Minimization Approach to Sparse Precision Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 594-607.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yanxiao & Liu, Shichao & Wang, Julian & Yang, Jing & Jao, Ying-Ling & Wang, Nan, 2022. "Data-driven personal thermal comfort prediction: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
    2. Aaron J Molstad & Adam J Rothman, 2018. "Shrinking characteristics of precision matrix estimators," Biometrika, Biometrika Trust, vol. 105(3), pages 563-574.
    3. Dong Liu & Changwei Zhao & Yong He & Lei Liu & Ying Guo & Xinsheng Zhang, 2023. "Simultaneous cluster structure learning and estimation of heterogeneous graphs for matrix‐variate fMRI data," Biometrics, The International Biometric Society, vol. 79(3), pages 2246-2259, September.
    4. Zhou Tang & Zhangsheng Yu & Cheng Wang, 2020. "A fast iterative algorithm for high-dimensional differential network," Computational Statistics, Springer, vol. 35(1), pages 95-109, March.
    5. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    6. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
    7. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    8. Fang, Qian & Yu, Chen & Weiping, Zhang, 2020. "Regularized estimation of precision matrix for high-dimensional multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    9. Liu, Weidong & Luo, Xi, 2015. "Fast and adaptive sparse precision matrix estimation in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 153-162.
    10. Banerjee, Sayantan & Ghosal, Subhashis, 2015. "Bayesian structure learning in graphical models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 147-162.
    11. Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
    12. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    14. Zamar, Rubén, 2015. "Ranking Edges and Model Selection in High-Dimensional Graphs," DES - Working Papers. Statistics and Econometrics. WS ws1511, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    16. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    17. Khai X. Chiong & Hyungsik Roger Moon, 2017. "Estimation of Graphical Models using the $L_{1,2}$ Norm," Papers 1709.10038, arXiv.org, revised Oct 2017.
    18. Wang, Luheng & Chen, Zhao & Wang, Christina Dan & Li, Runze, 2020. "Ultrahigh dimensional precision matrix estimation via refitted cross validation," Journal of Econometrics, Elsevier, vol. 215(1), pages 118-130.
    19. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    20. Xiao Guo & Hai Zhang, 2020. "Sparse directed acyclic graphs incorporating the covariates," Statistical Papers, Springer, vol. 61(5), pages 2119-2148, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:144:y:2020:i:c:s0167947319302397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.