IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2227-d847767.html
   My bibliography  Save this article

Group Logistic Regression Models with l p,q Regularization

Author

Listed:
  • Yanfang Zhang

    (College of Science, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China)

  • Chuanhua Wei

    (College of Science, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China)

  • Xiaolin Liu

    (College of Science, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China)

Abstract

In this paper, we proposed a logistic regression model with l p , q regularization that could give a group sparse solution. The model could be applied to variable-selection problems with sparse group structures. In the context of big data, the solutions for practical problems are often group sparse, so it is necessary to study this kind of model. We defined the model from three perspectives: theoretical, algorithmic and numeric. From the theoretical perspective, by introducing the notion of the group restricted eigenvalue condition, we gave the oracle inequality, which was an important property for the variable-selection problems. The global recovery bound was also established for the logistic regression model with l p , q regularization. From the algorithmic perspective, we applied the well-known alternating direction method of multipliers (ADMM) algorithm to solve the model. The subproblems for the ADMM algorithm were solved effectively. From the numerical perspective, we performed experiments for simulated data and real data in the factor stock selection. We employed the ADMM algorithm that we presented in the paper to solve the model. The numerical results were also presented. We found that the model was effective in terms of variable selection and prediction.

Suggested Citation

  • Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2227-:d:847767
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    3. Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
    4. Robert Tibshirani, 2011. "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 273-282, June.
    5. Jian Huang & Shuange Ma & Huiliang Xie & Cun-Hui Zhang, 2009. "A group bridge approach for variable selection," Biometrika, Biometrika Trust, vol. 96(2), pages 339-355.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    9. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    2. Young Joo Yoon & Cheolwoo Park & Erik Hofmeister & Sangwook Kang, 2012. "Group variable selection in cardiopulmonary cerebral resuscitation data for veterinary patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1605-1621, January.
    3. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    4. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
    5. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    8. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    9. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    10. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    11. Hidetoshi Matsui & Toshihiro Misumi, 2015. "Variable selection for varying-coefficient models with the sparse regularization," Computational Statistics, Springer, vol. 30(1), pages 43-55, March.
    12. Haibin Zhang & Juan Wei & Meixia Li & Jie Zhou & Miantao Chao, 2014. "On proximal gradient method for the convex problems regularized with the group reproducing kernel norm," Journal of Global Optimization, Springer, vol. 58(1), pages 169-188, January.
    13. Chen, Ya & Tsionas, Mike G. & Zelenyuk, Valentin, 2021. "LASSO+DEA for small and big wide data," Omega, Elsevier, vol. 102(C).
    14. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    15. Yanming Li & Bin Nan & Ji Zhu, 2015. "Multivariate sparse group lasso for the multivariate multiple linear regression with an arbitrary group structure," Biometrics, The International Biometric Society, vol. 71(2), pages 354-363, June.
    16. Ya Chen & Mike Tsionas & Valentin Zelenyuk, 2020. "LASSO DEA for small and big data," CEPA Working Papers Series WP092020, School of Economics, University of Queensland, Australia.
    17. Wenyan Zhong & Xuewen Lu & Jingjing Wu, 2021. "Bi-level variable selection in semiparametric transformation models with right-censored data," Computational Statistics, Springer, vol. 36(3), pages 1661-1692, September.
    18. Yue, Mu & Li, Jialiang & Cheng, Ming-Yen, 2019. "Two-step sparse boosting for high-dimensional longitudinal data with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 222-234.
    19. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    20. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2227-:d:847767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.