A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-013-9598-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
- Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
- P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
- NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- L. Xiao & S. Boyd, 2006. "Optimal Scaling of a Gradient Method for Distributed Resource Allocation," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 469-488, June.
- K. C. Kiwiel, 2007. "On Linear-Time Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 549-554, September.
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mingyi Hong & Tsung-Hui Chang & Xiangfeng Wang & Meisam Razaviyayn & Shiqian Ma & Zhi-Quan Luo, 2020. "A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 833-861, August.
- Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
- Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
- Ion Necoara & Yurii Nesterov & François Glineur, 2017.
"Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks,"
Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
- Ion NECOARA & Yurii NESTEROV & François GLINEUR, 2017. "Random block coordinate descent methods for linearly constrained optimization over networks," LIDAM Reprints CORE 2844, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- I. V. Konnov, 2016. "Selective bi-coordinate variations for resource allocation type problems," Computational Optimization and Applications, Springer, vol. 64(3), pages 821-842, July.
- Rachael Tappenden & Peter Richtárik & Jacek Gondzio, 2016. "Inexact Coordinate Descent: Complexity and Preconditioning," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 144-176, July.
- Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Cristofari, 2019. "An almost cyclic 2-coordinate descent method for singly linearly constrained problems," Computational Optimization and Applications, Springer, vol. 73(2), pages 411-452, June.
- Cassioli, A. & Di Lorenzo, D. & Sciandrone, M., 2013. "On the convergence of inexact block coordinate descent methods for constrained optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 274-281.
- Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
- Ion Necoara & Yurii Nesterov & François Glineur, 2017.
"Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks,"
Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
- Ion NECOARA & Yurii NESTEROV & François GLINEUR, 2017. "Random block coordinate descent methods for linearly constrained optimization over networks," LIDAM Reprints CORE 2844, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
- Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
- Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
- Amir Beck, 2014. "The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 892-919, September.
- Ching-pei Lee & Stephen J. Wright, 2020. "Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 151-187, April.
- R. Lopes & S. A. Santos & P. J. S. Silva, 2019. "Accelerating block coordinate descent methods with identification strategies," Computational Optimization and Applications, Springer, vol. 72(3), pages 609-640, April.
- Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
- Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
- Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
- David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
- Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
- Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
- Christian Kanzow & Theresa Lechner, 2021. "Globalized inexact proximal Newton-type methods for nonconvex composite functions," Computational Optimization and Applications, Springer, vol. 78(2), pages 377-410, March.
- P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
- Leonardo Galli & Alessandro Galligari & Marco Sciandrone, 2020. "A unified convergence framework for nonmonotone inexact decomposition methods," Computational Optimization and Applications, Springer, vol. 75(1), pages 113-144, January.
- Zhigang Li & Mingchuan Zhang & Junlong Zhu & Ruijuan Zheng & Qikun Zhang & Qingtao Wu, 2018. "Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization," Complexity, Hindawi, vol. 2018, pages 1-11, December.
More about this item
Keywords
Coordinate descent; Composite objective function; Linearly coupled constraints; Randomized algorithms; Convergence rate $mathcal{O}(1/epsilon)$ ;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:57:y:2014:i:2:p:307-337. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.