IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v10y2011i1n39.html
   My bibliography  Save this article

Weighted Lasso with Data Integration

Author

Listed:
  • Bergersen Linn Cecilie
  • Glad Ingrid K.
  • Lyng Heidi

Abstract

The lasso is one of the most commonly used methods for high-dimensional regression, but can be unstable and lacks satisfactory asymptotic properties for variable selection. We propose to use weighted lasso with integrated relevant external information on the covariates to guide the selection towards more stable results. Weighting the penalties with external information gives each regression coefficient a covariate specific amount of penalization and can improve upon standard methods that do not use such information by borrowing knowledge from the external material. The method is applied to two cancer data sets, with gene expressions as covariates. We find interesting gene signatures, which we are able to validate. We discuss various ideas on how the weights should be defined and illustrate how different types of investigations can utilize our method exploiting different sources of external data. Through simulations, we show that our method outperforms the lasso and the adaptive lasso when the external information is from relevant to partly relevant, in terms of both variable selection and prediction.

Suggested Citation

  • Bergersen Linn Cecilie & Glad Ingrid K. & Lyng Heidi, 2011. "Weighted Lasso with Data Integration," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-29, August.
  • Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:39
    DOI: 10.2202/1544-6115.1703
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1703
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Meinshausen, Nicolai, 2007. "Relaxed Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 374-393, September.
    3. Chris Hans, 2009. "Bayesian lasso regression," Biometrika, Biometrika Trust, vol. 96(4), pages 835-845.
    4. Gareth M. James & Peter Radchenko, 2009. "A generalized Dantzig selector with shrinkage tuning," Biometrika, Biometrika Trust, vol. 96(2), pages 323-337.
    5. Peter Donnelly, 2008. "Progress and challenges in genome-wide association studies in humans," Nature, Nature, vol. 456(7223), pages 728-731, December.
    6. Wei Pan & Benhuai Xie & Xiaotong Shen, 2010. "Incorporating Predictor Network in Penalized Regression with Application to Microarray Data," Biometrics, The International Biometric Society, vol. 66(2), pages 474-484, June.
    7. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    8. Charbonnier Camille & Chiquet Julien & Ambroise Christophe, 2010. "Weighted-LASSO for Structured Network Inference from Time Course Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-29, February.
    9. Hao Helen Zhang & Wenbin Lu, 2007. "Adaptive Lasso for Cox's proportional hazards model," Biometrika, Biometrika Trust, vol. 94(3), pages 691-703.
    10. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    11. Michael Morley & Cliona M. Molony & Teresa M. Weber & James L. Devlin & Kathryn G. Ewens & Richard S. Spielman & Vivian G. Cheung, 2004. "Genetic analysis of genome-wide variation in human gene expression," Nature, Nature, vol. 430(7001), pages 743-747, August.
    12. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    13. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    14. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anders Løland & Ragnar Bang Huseby & Nils Lid Hjort & Arnoldo Frigessi, 2013. "Statistical Corrections of Invalid Correlation Matrices," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 807-824, December.
    2. Zhi Zhao & Manuela Zucknick, 2020. "Structured penalized regression for drug sensitivity prediction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 525-545, June.
    3. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    2. Ruggieri, Eric & Lawrence, Charles E., 2012. "On efficient calculations for Bayesian variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1319-1332.
    3. Young Joo Yoon & Cheolwoo Park & Erik Hofmeister & Sangwook Kang, 2012. "Group variable selection in cardiopulmonary cerebral resuscitation data for veterinary patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1605-1621, January.
    4. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    5. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    6. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
    7. Chakraborty, Sounak & Lozano, Aurelie C., 2019. "A graph Laplacian prior for Bayesian variable selection and grouping," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 72-91.
    8. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    9. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    10. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    11. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    12. Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
    13. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    14. Min Chen & Yimin Lian & Zhao Chen & Zhengjun Zhang, 2017. "Sure explained variability and independence screening," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 849-883, October.
    15. Philip Kostov & Thankom Arun & Samuel Annim, 2014. "Financial Services to the Unbanked: the case of the Mzansi intervention in South Africa," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(2), June.
    16. Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
    17. Mogliani, Matteo & Simoni, Anna, 2021. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
    18. Armin Rauschenberger & Iuliana Ciocănea-Teodorescu & Marianne A. Jonker & Renée X. Menezes & Mark A. Wiel, 2020. "Sparse classification with paired covariates," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 571-588, September.
    19. Aneiros, Germán & Novo, Silvia & Vieu, Philippe, 2022. "Variable selection in functional regression models: A review," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    20. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.