IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v90y2024i3d10.1007_s10898-024-01418-9.html
   My bibliography  Save this article

A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression

Author

Listed:
  • Weiyang Ding

    (Fudan University
    Shanghai Center for Brain Science and Brain-Inspired Technology)

  • Michael K. Ng

    (Hong Kong Baptist University)

  • Wenxing Zhang

    (University of Electronic Science and Technology of China)

Abstract

A large family of paradigmatic models arising in the area of image/signal processing, machine learning and statistics regression can be boiled down to consensus optimization. This paper is devoted to a class of consensus optimization by reformulating it as monotone plus skew-symmetric inclusion. We propose a distributed optimization method by deploying the algorithmic framework of generalized alternating direction implicit method. Under some mild conditions, the proposed method converges globally. Furthermore, the preconditioner is exploited to expedite the efficiency of the proposed method. Numerical simulations on sparse logistic regression are implemented by variant distributed fashions. Compared to some state-of-the-art methods, the proposed method exhibits appealing numerical performances, especially when the relaxation factor approaches to zero.

Suggested Citation

  • Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
  • Handle: RePEc:spr:jglopt:v:90:y:2024:i:3:d:10.1007_s10898-024-01418-9
    DOI: 10.1007/s10898-024-01418-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01418-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01418-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bingsheng He & Feng Ma & Xiaoming Yuan, 2020. "Optimally linearizing the alternating direction method of multipliers for convex programming," Computational Optimization and Applications, Springer, vol. 75(2), pages 361-388, March.
    2. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    3. Bartlett, Peter L. & Jordan, Michael I. & McAuliffe, Jon D., 2006. "Convexity, Classification, and Risk Bounds," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 138-156, March.
    4. Jonathan Eckstein, 2017. "A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 155-182, April.
    5. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    6. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis M. Briceño-Arias & Giovanni Chierchia & Emilie Chouzenoux & Jean-Christophe Pesquet, 2019. "A random block-coordinate Douglas–Rachford splitting method with low computational complexity for binary logistic regression," Computational Optimization and Applications, Springer, vol. 72(3), pages 707-726, April.
    2. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    3. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    4. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.
    5. Majela Pentón Machado & Mauricio Romero Sicre, 2023. "A Projective Splitting Method for Monotone Inclusions: Iteration-Complexity and Application to Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 552-587, August.
    6. Guan Yu & Yufeng Liu, 2016. "Sparse Regression Incorporating Graphical Structure Among Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 707-720, April.
    7. Rafael E. Carrillo & Martin Leblanc & Baptiste Schubnel & Renaud Langou & Cyril Topfel & Pierre-Jean Alet, 2020. "High-Resolution PV Forecasting from Imperfect Data: A Graph-Based Solution," Energies, MDPI, vol. 13(21), pages 1-17, November.
    8. Patrick R. Johnstone & Jonathan Eckstein, 2021. "Single-forward-step projective splitting: exploiting cocoercivity," Computational Optimization and Applications, Springer, vol. 78(1), pages 125-166, January.
    9. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    10. Bakalli, Gaetan & Guerrier, Stéphane & Scaillet, Olivier, 2023. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    12. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    13. Wongsa-art, Pipat & Kim, Namhyun & Xia, Yingcun & Moscone, Francesco, 2024. "Varying coefficient panel data models and methods under correlated error components: Application to disparities in mental health services in England," Regional Science and Urban Economics, Elsevier, vol. 106(C).
    14. Dong, C. & Li, S., 2021. "Specification Lasso and an Application in Financial Markets," Cambridge Working Papers in Economics 2139, Faculty of Economics, University of Cambridge.
    15. Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
    16. Gregory Vaughan & Robert Aseltine & Kun Chen & Jun Yan, 2017. "Stagewise generalized estimating equations with grouped variables," Biometrics, The International Biometric Society, vol. 73(4), pages 1332-1342, December.
    17. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    18. Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
    19. Yucheng Yang & Zhong Zheng & Weinan E, 2020. "Interpretable Neural Networks for Panel Data Analysis in Economics," Papers 2010.05311, arXiv.org, revised Nov 2020.
    20. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:90:y:2024:i:3:d:10.1007_s10898-024-01418-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.