A regularized variable selection procedure in additive hazards model with stratified case-cohort design
Author
Abstract
Suggested Citation
DOI: 10.1007/s10985-017-9402-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Wei Lin & Jinchi Lv, 2013. "High-Dimensional Sparse Additive Hazards Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 247-264, March.
- Torben Martinussen & Thomas H. Scheike, 2009. "Covariate Selection for the Semiparametric Additive Risk Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 602-619, December.
- Ai Ni & Jianwen Cai & Donglin Zeng, 2016. "Variable selection for case-cohort studies with failure time outcome," Biometrika, Biometrika Trust, vol. 103(3), pages 547-562.
- Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yan, Xiaodong & Wang, Hongni & Wang, Wei & Xie, Jinhan & Ren, Yanyan & Wang, Xinjun, 2021. "Optimal model averaging forecasting in high-dimensional survival analysis," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1147-1155.
- Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
- Arfan Raheen Afzal & Jing Yang & Xuewen Lu, 2021. "Variable selection in partially linear additive hazards model with grouped covariates and a diverging number of parameters," Computational Statistics, Springer, vol. 36(2), pages 829-855, June.
- Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
- Lam, Clifford, 2008. "Estimation of large precision matrices through block penalization," LSE Research Online Documents on Economics 31543, London School of Economics and Political Science, LSE Library.
- Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
- Pradeep Ravikumar & John Lafferty & Han Liu & Larry Wasserman, 2009. "Sparse additive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 1009-1030, November.
- Toshio Honda, 2021. "The de-biased group Lasso estimation for varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(1), pages 3-29, February.
- Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
- Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
- Feng, Guohua & Gao, Jiti & Peng, Bin, 2022.
"An integrated panel data approach to modelling economic growth,"
Journal of Econometrics, Elsevier, vol. 228(2), pages 379-397.
- Guohua Feng & Jiti Gao & Bin Peng, 2019. "An Integrated Panel Data Approach to Modelling Economic Growth," Papers 1903.07948, arXiv.org.
- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Post-Print hal-01954386, HAL.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015.
"A lava attack on the recovery of sums of dense and sparse signals,"
CeMMAP working papers
CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers 56/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP05/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," Papers 1502.03155, arXiv.org, revised Mar 2015.
- Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers 05/15, Institute for Fiscal Studies.
- Fei Jin & Lung-fei Lee, 2018. "Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices," Econometrics, MDPI, vol. 6(1), pages 1-24, February.
- repec:kan:wpaper:202105 is not listed on IDEAS
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Zhang, Tonglin, 2024. "Variables selection using L0 penalty," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
- Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2016.
"The lasso for high dimensional regression with a possible change point,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 193-210, January.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers 26/14, Institute for Fiscal Studies.
- Sokbae (Simon) Lee & Myung Hwan Seo & Youngki Shin, 2014. "The lasso for high-dimensional regression with a possible change-point," CeMMAP working papers CWP26/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
More about this item
Keywords
Additive hazards model; Diverging number of parameters; SCAD; Stratified case-cohort design; Survival analysis; Variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:24:y:2018:i:3:d:10.1007_s10985-017-9402-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.