IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v68y2012i2p419-428.html
   My bibliography  Save this article

Model Selection for Cox Models with Time-Varying Coefficients

Author

Listed:
  • Jun Yan
  • Jian Huang

Abstract

No abstract is available for this item.

Suggested Citation

  • Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
  • Handle: RePEc:bla:biomet:v:68:y:2012:i:2:p:419-428
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2011.01692.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu Tian & David Zucker & L.J. Wei, 2005. "On the Cox Model With Time-Varying Regression Coefficients," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 172-183, March.
    2. P. Tseng, 2001. "Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization," Journal of Optimization Theory and Applications, Springer, vol. 109(3), pages 475-494, June.
    3. Hao Helen Zhang & Wenbin Lu, 2007. "Adaptive Lasso for Cox's proportional hazards model," Biometrika, Biometrika Trust, vol. 94(3), pages 691-703.
    4. Zongwu Cai & Yanqing Sun, 2003. "Local Linear Estimation for Time‐Dependent Coefficients in Cox's Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 93-111, March.
    5. Wang, Lifeng & Li, Hongzhe & Huang, Jianhua Z., 2008. "Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1556-1569.
    6. Torben Martinussen, 2002. "A flexible additive multiplicative hazard model," Biometrika, Biometrika Trust, vol. 89(2), pages 283-298, June.
    7. Zhang, Hao Helen & Cheng, Guang & Liu, Yufeng, 2011. "Linear or Nonlinear? Automatic Structure Discovery for Partially Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1099-1112.
    8. W. Sauerbrei & P. Royston, 1999. "Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 162(1), pages 71-94.
    9. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    10. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Honda, Toshio & Härdle, Wolfgang Karl, 2012. "Variable selection in Cox regression models with varying coefficients," SFB 649 Discussion Papers 2012-061, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. Xie Xiaodong & Zheng Shaozhi, 2017. "Group MCP for Cox Models with Time-Varying Coefficients," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 476-488, October.
    3. Qu, Lianqiang & Wang, Xiaoyu & Sun, Liuquan, 2022. "Variable screening for varying coefficient models with ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    4. Yang, Guangren & Zhang, Ling & Li, Runze & Huang, Yuan, 2019. "Feature screening in ultrahigh-dimensional varying-coefficient Cox model," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 284-297.
    5. HONDA, Toshio & 本田, 敏雄 & YABE, Ryota & 矢部, 竜太, 2017. "Variable selection and structure identification for varying coefficient Cox models," Discussion Papers 2016-05, Graduate School of Economics, Hitotsubashi University.
    6. Jie Ren & Fei Zhou & Xiaoxi Li & Shuangge Ma & Yu Jiang & Cen Wu, 2023. "Robust Bayesian variable selection for gene–environment interactions," Biometrics, The International Biometric Society, vol. 79(2), pages 684-694, June.
    7. Honda, Toshio & Yabe, Ryota, 2017. "Variable selection and structure identification for varying coefficient Cox models," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 103-122.
    8. Xin Cheng & Wenbin Lu & Mengling Liu, 2015. "Identification of homogeneous and heterogeneous variables in pooled cohort studies," Biometrics, The International Biometric Society, vol. 71(2), pages 397-403, June.
    9. Wenbo Wu & Jeremy M. G. Taylor & Andrew F. Brouwer & Lingfeng Luo & Jian Kang & Hui Jiang & Kevin He, 2022. "Scalable proximal methods for cause-specific hazard modeling with time-varying coefficients," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 194-218, April.
    10. repec:hum:wpaper:sfb649dp2012-061 is not listed on IDEAS
    11. Li‐Pang Chen & Grace Y. Yi, 2021. "Analysis of noisy survival data with graphical proportional hazards measurement error models," Biometrics, The International Biometric Society, vol. 77(3), pages 956-969, September.
    12. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    13. Dayu Sun & Yuanyuan Guo & Yang Li & Jianguo Sun & Wanzhu Tu, 2024. "A flexible time-varying coefficient rate model for panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 721-741, October.
    14. Kevin He & Ji Zhu & Jian Kang & Yi Li, 2022. "Stratified Cox models with time‐varying effects for national kidney transplant patients: A new blockwise steepest ascent method," Biometrics, The International Biometric Society, vol. 78(3), pages 1221-1232, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    2. repec:hum:wpaper:sfb649dp2012-061 is not listed on IDEAS
    3. Honda, Toshio & Härdle, Wolfgang Karl, 2012. "Variable selection in Cox regression models with varying coefficients," SFB 649 Discussion Papers 2012-061, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Heng Lian & Peng Lai & Hua Liang, 2013. "Partially Linear Structure Selection in Cox Models with Varying Coefficients," Biometrics, The International Biometric Society, vol. 69(2), pages 348-357, June.
    5. Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
    6. Xin Cheng & Wenbin Lu & Mengling Liu, 2015. "Identification of homogeneous and heterogeneous variables in pooled cohort studies," Biometrics, The International Biometric Society, vol. 71(2), pages 397-403, June.
    7. Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.
    8. Jun Jin & Tiefeng Ma & Jiajia Dai, 2021. "New efficient spline estimation for varying-coefficient models with two-step knot number selection," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 693-712, July.
    9. Yen, Yu-Min & Yen, Tso-Jung, 2014. "Solving norm constrained portfolio optimization via coordinate-wise descent algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 737-759.
    10. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    11. Garcia-Magariños Manuel & Antoniadis Anestis & Cao Ricardo & González-Manteiga Wenceslao, 2010. "Lasso Logistic Regression, GSoft and the Cyclic Coordinate Descent Algorithm: Application to Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-30, August.
    12. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    13. A. Antoniadis & I. Gijbels & S. Lambert-Lacroix, 2014. "Penalized estimation in additive varying coefficient models using grouped regularization," Statistical Papers, Springer, vol. 55(3), pages 727-750, August.
    14. Mingrui Zhong & Zanhua Yin & Zhichao Wang, 2023. "Variable Selection for Sparse Logistic Regression with Grouped Variables," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
    15. Benjamin G. Stokell & Rajen D. Shah & Ryan J. Tibshirani, 2021. "Modelling high‐dimensional categorical data using nonconvex fusion penalties," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 579-611, July.
    16. Akira Shinkyu, 2023. "Forward Selection for Feature Screening and Structure Identification in Varying Coefficient Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 485-511, February.
    17. Feng, Sanying & He, Wenqi & Li, Feng, 2020. "Model detection and estimation for varying coefficient panel data models with fixed effects," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    18. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    19. Zhigeng Geng & Sijian Wang & Menggang Yu & Patrick O. Monahan & Victoria Champion & Grace Wahba, 2015. "Group variable selection via convex log-exp-sum penalty with application to a breast cancer survivor study," Biometrics, The International Biometric Society, vol. 71(1), pages 53-62, March.
    20. Hu, Yuao & Lian, Heng, 2013. "Variable selection in a partially linear proportional hazards model with a diverging dimensionality," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 61-69.
    21. Denis Agniel & Katherine P. Liao & Tianxi Cai, 2016. "Estimation and testing for multiple regulation of multivariate mixed outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1194-1205, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:68:y:2012:i:2:p:419-428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.