IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i13p2388-2400.html
   My bibliography  Save this article

A link-free sparse group variable selection method for single-index model

Author

Listed:
  • Bilin Zeng
  • Xuerong Meggie Wen
  • Lixing Zhu

Abstract

For regression problems with grouped covariates, we adapt the idea of sparse group lasso (SGL) [10] to the framework of the sufficient dimension reduction. Assuming that the regression falls into a single-index structure, we propose a method called the sparse group sufficient dimension reduction to conduct group and within-group variable selections simultaneously without assuming a specific link function. Simulation studies show that our method is comparable to the SGL under the regular linear model setting and outperforms SGL with higher true positive rates and substantially lower false positive rates when the regression function is nonlinear. One immediate application of our method is to the gene pathway data analysis where genes naturally fall into groups (pathways). An analysis of a glioblastoma microarray data is included for illustration of our method.

Suggested Citation

  • Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:13:p:2388-2400
    DOI: 10.1080/02664763.2016.1254731
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1254731
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1254731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liqiang Ni & R. Dennis Cook & Chih-Ling Tsai, 2005. "A note on shrinkage sliced inverse regression," Biometrika, Biometrika Trust, vol. 92(1), pages 242-247, March.
    2. Howard D. Bondell & Lexin Li, 2009. "Shrinkage inverse regression estimation for model‐free variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 287-299, January.
    3. Li, Lexin & Li, Bing & Zhu, Li-Xing, 2010. "Groupwise Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1188-1201.
    4. Yin, Xiangrong & Li, Bing & Cook, R. Dennis, 2008. "Successive direction extraction for estimating the central subspace in a multiple-index regression," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1733-1757, September.
    5. Jian Huang & Shuange Ma & Huiliang Xie & Cun-Hui Zhang, 2009. "A group bridge approach for variable selection," Biometrika, Biometrika Trust, vol. 96(2), pages 339-355.
    6. Lexin Li & R. Dennis Cook & Christopher J. Nachtsheim, 2005. "Model‐free variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 285-299, April.
    7. Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
    8. Jae Keun Yoo & R. Dennis Cook, 2007. "Optimal sufficient dimension reduction for the conditional mean in multivariate regression," Biometrika, Biometrika Trust, vol. 94(1), pages 231-242.
    9. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    10. Lexin Li, 2007. "Sparse sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 94(3), pages 603-613.
    11. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    12. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    13. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    14. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    15. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang Hailin & Shangguan Jizi & Ruan Peifeng & Liang Hua, 2019. "Bi-level feature selection in high dimensional AFT models with applications to a genomic study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tao & Zhu, Lixing, 2013. "Sparse sufficient dimension reduction using optimal scoring," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 223-232.
    2. Yao, Weixin & Wang, Qin, 2013. "Robust variable selection through MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 42-49.
    3. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    4. Yanfang Zhang & Chuanhua Wei & Xiaolin Liu, 2022. "Group Logistic Regression Models with l p,q Regularization," Mathematics, MDPI, vol. 10(13), pages 1-15, June.
    5. Zhou Yu & Yuexiao Dong & Li-Xing Zhu, 2016. "Trace Pursuit: A General Framework for Model-Free Variable Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 813-821, April.
    6. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    7. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    8. Wang, Qin & Yin, Xiangrong, 2008. "A nonlinear multi-dimensional variable selection method for high dimensional data: Sparse MAVE," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4512-4520, May.
    9. Young Joo Yoon & Cheolwoo Park & Erik Hofmeister & Sangwook Kang, 2012. "Group variable selection in cardiopulmonary cerebral resuscitation data for veterinary patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1605-1621, January.
    10. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    11. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
    12. Mingqiu Wang & Guo-Liang Tian, 2016. "Robust group non-convex estimations for high-dimensional partially linear models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 49-67, March.
    13. Abdallah Mkhadri & Mohamed Ouhourane, 2015. "A group VISA algorithm for variable selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 41-60, March.
    14. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    17. Osamu Komori & Shinto Eguchi & John B. Copas, 2015. "Generalized t-statistic for two-group classification," Biometrics, The International Biometric Society, vol. 71(2), pages 404-416, June.
    18. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    19. Ruidi Chen & Ioannis Ch. Paschalidis, 2022. "Robust Grouped Variable Selection Using Distributionally Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1042-1071, September.
    20. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:13:p:2388-2400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.